William M. White - Geochemistry

Здесь есть возможность читать онлайн «William M. White - Geochemistry» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Geochemistry: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Geochemistry»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A Comprehensive Introduction to the “Geochemist Toolbox” – the Basic Principles of Modern Geochemistry In the new edition of William M. White’s
, undergraduate and graduate students will find each of the core principles of geochemistry covered. From defining key principles and methods to examining Earth’s core composition and exploring organic chemistry and fossil fuels, this definitive edition encompasses all the information needed for a solid foundation in the earth sciences for beginners and beyond. 
For researchers and applied scientists, this book will act as a useful reference on fundamental theories of geochemistry, applications, and environmental sciences. The new edition includes new chapters on the geochemistry of the Earth’s surface (the “critical zone”), marine geochemistry, and applied geochemistry as it relates to environmental applications and geochemical exploration.
● A review of the fundamentals of geochemical thermodynamics and kinetics, trace element and organic geochemistry
● An introduction to radiogenic and stable isotope geochemistry and applications such as geologic time, ancient climates, and diets of prehistoric people
● Formation of the Earth and composition and origins of the core, the mantle, and the crust
● New chapters that cover soils and streams, the oceans, and geochemistry applied to the environment and mineral exploration
In this foundational look at geochemistry, new learners and professionals will find the answer to the essential principles and techniques of the science behind the Earth and its environs.

Geochemistry — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Geochemistry», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Table 3.2b Debye–Hückel effective radii.

Ion å (10 –8cm)
Rb +, Cs +, картинка 448, Ag + 2.5
K +, Cl –, Br –, I –, картинка 449 3
OH –, F –, HS –, картинка 450, картинка 451, картинка 452 3.5
Na +, картинка 453, картинка 454, картинка 455, картинка 456, картинка 457 4.0–4.5
Pb 2+, картинка 458, картинка 459 4.5
Sr 2+, Ba 2+, Cd 2+, Hg 2+, S 2– 5
Li +, Ca 2+, Cu 2+, Zn 2+, Sn 2+, Mn 2+, Fe 2+, Ni 2+ 6
Mg 2+, Be 2+ 8
H +, Al 3+, trivalent rare earths 9
Th 4+, Zr 4+, Ce 4+ 11

From Garrels and Christ (1982).

This equation is known as the Debye–Hückel limiting law (so-called because it applies in the limit of very dilute concentrations).

Davies (1938, 1962) introduced an empirical modification of the Debye–Hückel equation. The Davies equation is:

(3.77) where A is the same as in the DebyeHückel equation and b is an empirically - фото 460

where A is the same as in the Debye–Hückel equation and b is an empirically determined parameter with a value of around 0.3. It is instructive to see how the activity coefficient of Ca 2+would vary according to Debye–Hückel and Davies equations if we vary the ionic strength of the solution. This variation is shown in Figure 3.15. The Davies equation predicts that activity coefficients begin to increase above ionic strengths of about 0.5 m. For reasons discussed below and in greater detail in Chapter 4, activity coefficients do actually increase at higher ionic strengths. On the whole, the Davies equation is slightly more accurate for many solutions at ionic strengths of 0.1−1 m. Because of this, as well as its simplicity, the Davies equation is widely used.

3.7.3.2 Limitations to the Debye–Hückel approach

None of the assumptions made by Debye and Hückel hold in the absolute. Furthermore, the Poisson–Boltzmann equation provides only an approximate description of ion interactions, and Debye and Hückel used an approximate solution of this equation. Thus, we should not expect the Debye–Hückel equations to provide an exact prediction of activity coefficients under all conditions.

Figure 315 Variation of the Ca 2activity coefficient with ionic strength - фото 461

Figure 3.15 Variation of the Ca 2+activity coefficient with ionic strength according to the Debye–Hückel (black solid line) and Davies equations (red dashed line).

Perhaps the greatest difficulty is the assumption of complete dissociation. When ions approach each other closely, the electrostatic interaction energy exceeds the thermal energy, which violates the assumption made in the approximate solution of the Poisson–Boltzmann equation. In this case, the ions are said to be associated. Furthermore, the charge on ions is not spherically symmetric and this asymmetry becomes increasingly important at short distances. Close approach is obviously more likely at high ionic strength, so not surprisingly the Debye–Hückel equation breaks down at high ionic strength.

We can distinguish two broad types of ion associations: ion pairs and complexes. These two classes actually form a continuum, but we will define a complex as an association of ions in solution that involves some degree of covalent bonding (i.e., electron sharing). Ion pairs, on the other hand, are held together purely by electrostatic forces. We will discuss formation of ion pairs and complexes in greater detail in subsequent chapters. Here, we will attempt to convey only a very qualitative understanding of these effects.

An ion pair †can be considered to have formed when ions approach closer than some critical distance where the electrostatic energy, which tends to bind them, exceeds twice the thermal energy, which tends to move them apart. When this happens, the ions are electrostatically bound and their motions are linked. This critical distance depends on the charge of the ions involved and is therefore much greater for highly charged ions than for singly charged ones. As we will show in Chapter 4, ion pairs involving singly charged ions will never form, even at high ionic strengths. On the other hand, multiply charged ions will tend to form ion pairs even at very low ionic strengths.

Formation of ion pairs will cause further deviations from ideality. We can identify two effects. First, the effective concentration, or activity, of an ionic species that forms ionic associations will be reduced. Consider, for example, a pure solution of CaSO 4. If some fraction, α , of Ca 2+and SO 4 2–ions forms ion pairs, then the effective concentration of Ca 2+ions is:

here we follow the usual convention of using brackets to denote - фото 462

(here we follow the usual convention of using brackets to denote concentrations). The second effect is on ionic strength. By assuming complete dissociation, we similarly overestimate the effective concentration in this example by a factor of (1 – α).

A second phenomenon that causes deviations from ideality not predicted by Debye–Hückel is solvation. As we noted, an ion in aqueous solution is surrounded by a sphere of water molecules that are bound to it. Since those water molecules bound to the ion are effectively unavailable for reaction, the activity of water is reduced by the fraction of water molecules bound in solvation shells. This fraction is trivial in dilution solutions but is important at high ionic strength. The result of this effect is to increase the activity of ions.

Despite these problems, Debye–Hückel has proved to be remarkably successful in predicting activity coefficients in dilute solution. The extended Debye–Hückel equation ( eqn. 3.74) is most useful at concentrations less than 0.1 M, which includes many natural waters, and provides adequate approximation for activity coefficients up to ionic strengths of about 1 M, which would include most solutions of geologic interest, including seawater. As we noted above, the Davies equation is slightly more accurate in the range of 0.1 to 1 M ionic strength. Above these concentrations, both the Davies and Debye–Hückel equations are increasingly inaccurate. There are a variety of geologically important solutions for which the Debye–Hückel and Davies equations cannot be used, including hydrothermal solutions, metamorphic fluids, ore-forming fluids, highly saline lakes, formation brines, and aerosol particles. Figure 3.16summarizes the typical ionic strengths of natural solutions and the applicability of these equations. The Debye–Hückel limiting law is useful only for very dilute solutions, less than 10 −5mol/kg, which is more dilute than essentially all solutions of geologic interest. We will consider several methods of estimating activities in higher ionic strength solutions in Chapter 4.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Geochemistry»

Представляем Вашему вниманию похожие книги на «Geochemistry» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Geochemistry»

Обсуждение, отзывы о книге «Geochemistry» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x