Robert Bartoszynski - Probability and Statistical Inference

Здесь есть возможность читать онлайн «Robert Bartoszynski - Probability and Statistical Inference» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Probability and Statistical Inference: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Probability and Statistical Inference»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Updated classic statistics text, with new problems and examples
Probability and Statistical Inference, Third Edition
Probability and Statistical Inference 

Probability and Statistical Inference — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Probability and Statistical Inference», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
which is the same as 35 Example 35 Birthday Problem The following - фото 1017

which is the same as ( 3.5).

Example 3.5 Birthday Problem

The following problem has a long tradition and appears in many textbooks. If картинка 1018randomly chosen persons attend a party, what is the probability картинка 1019that none of them will have a birthday on the same day?

Solution

Here we make the following assumption: (1) all years have 365 days (i.e., leap years are disregarded), (2) each day is equally likely to be a birthday of a person (i.e., births occur uniformly throughout the year), and (3) no twins attend the party. To compute картинка 1020, we must find the number of all possible ways in which birthdays can be allocated to картинка 1021people, and the number of such allocations in which birthdays do not repeat. The first number is картинка 1022(by Theorem 3.2.3), while the second number is картинка 1023(assuming картинка 1024; if картинка 1025, we must have at least one birthday repeating, so Thus for we have As a first approximation neglecting all produc - фото 1026). Thus, for we have As a first approximation neglecting all products which have - фото 1027, we have

As a first approximation neglecting all products which have denominators of - фото 1028

As a first approximation, neglecting all products which have denominators of order or higher we can take 36 This approximation works quite well for small - фото 1029or higher, we can take

(3.6) Probability and Statistical Inference - изображение 1030

This approximation works quite well for small Probability and Statistical Inference - изображение 1031. Now since Probability and Statistical Inference - изображение 1032, we have

(3.7) It is interesting that for a repeated birthday is about as likely as no - фото 1033

It is interesting that for картинка 1034a repeated birthday is about as likely as no repetition. The smallest картинка 1035for which картинка 1036is less than 0.01 is 56.

Problems

1 3.2.1 A certain set contains distinct elements. Find if the number of: (i) All possible permutations of length 2 equals 90. (ii) Permutations of length 3 is 10 times larger than the number of permutations of length 2.

2 3.2.2 A skyscraper is 40 stories tall. Five people enter the elevator on the first floor. Assuming each person is equally likely to get off at any of the 39 floors what is the probability that all people will get off at different floors? Find the exact value, and then derive and compute the approximations analogous to ( 3.6) and ( 3.7).

3 3.2.3 A two letter code is to be formed by selecting (without replacement) the letters from a given word. Find the number of possible codes if the word is: (i) CHART. (ii) ALOHA. (iii) STREET.

4 3.2.4 Determine the number of 0s at the end of 16! and 27!.

5 3.2.5 Seated at random in a row of seats are people, among them John and Mary. Find the probability that: (i) John sits next to Mary. (ii) John sits next to Mary on her right. (iii) John sits somewhere to the right of Mary. (iv) John and Mary sit exactly two seats apart.

6 3.2.6 Seated at random at a round table with seats are people, among them John and Mary. (i) Answer questions (i)–(iv) of Problem 3.2.5. Anything peculiar about the answer to (iii)? (ii) Assume that Find the probability that John and Mary sit facing each other (e.g., numbers 1 and 7 on the clock). (iii) Assume that . Find the probability that good friends, Nico, Noah, and Helen, are not separated by other guests.

7 3.2.7 Five men and five women are to be seated in a row of 10 chairs. Find the number of possible arrangements if: (i) Men are required to sit in alternating seats. (ii) No two men are to be seated next to each other.

8 3.2.8 A total of 12 girls and 17 boys go to a dance. (i) How many possible dancing pairs (boy–girl) may be formed? (ii) The dance floor can accommodate at most 11 pairs at a time. If each dance lasts 10 minutes and is followed by a 2‐minute break, how much time, at least, will elapse before each boy will have danced with each girl at least once? (iii) Answer the same question as in (ii) if the dance floor can accommodate 15 pairs at a time.

9 3.2.9 Susan has five dresses, three skirts, four blouses, three pairs of shoes, and two hats. She always wears shoes and either a dress or a blouse and a skirt. She may or may not wear a hat. (i) How many different combinations can she wear? (ii) Suppose Susan can afford buying either a dress or a hat (but not both). What should she buy to maximize the number of different combinations that she can wear? (iii) Suppose that Susan's brown shoes do not match her pink or blue dress and that the blue hat does not match her yellow blouse. How many matching combinations can she wear?

10 3.2.10 A restaurant menu has 5 appetizers, 3 soups, 15 entrees, and 3 desserts. (i) Assuming you are going to order one item from each group, how many possible dinners can you order? (ii) Assume you are at the restaurant with a friend. How many different orders for two full dinners can you place if your friend's choice of every item is not necessarily the same as yours? (iii) Answer the question in part (ii) under the constraint that you do not order the same entree and the same dessert as your friend (but the soup and/or appetizer may be the same).

11 3.2.11 Find the percentage of six‐digit numbers that have all digits distinct.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Probability and Statistical Inference»

Представляем Вашему вниманию похожие книги на «Probability and Statistical Inference» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Probability and Statistical Inference»

Обсуждение, отзывы о книге «Probability and Statistical Inference» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x