Robert Bartoszynski - Probability and Statistical Inference
Здесь есть возможность читать онлайн «Robert Bartoszynski - Probability and Statistical Inference» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Probability and Statistical Inference
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Probability and Statistical Inference: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Probability and Statistical Inference»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
Probability and Statistical Inference, Third Edition
Probability and Statistical Inference
implies (or entails )
.
and
are said to be equal ,
, if
and
.
consisting of four outcomes: HH, HT, TH, and TT. The event
“heads in the first toss”
HH, HT} is contained in the event
“at least one head”
HH, HT, TH}. The events “the results alternate” and “at least one head and one tail” imply one another, and hence are equal.
. The event corresponding to
is called a null ( impossible ) event.
such that
are both empty, but one consists of people and the other of numbers, so they cannot be equal. This is not so, however, as is shown by the following formal argument (to appreciate this argument, one needs some training in logic). Suppose that
and
are two empty sets. To prove that they are equal, one needs to prove that
and
. Formally, the first inclusion is the implication: “if
belongs to
, then
belongs to
.” This implication is true, because its premise is false: there is no
that belongs to
. The same holds for the second implication, so
.
will be called the complement of
and denoted
, to be read also as “not
.”
or to
(so possibly to both of them) is called the union of
and
and denoted
, to be read as “
or
.”
and
is called the intersection of
and
and denoted
.