Malcolm J. Crocker - Engineering Acoustics

Здесь есть возможность читать онлайн «Malcolm J. Crocker - Engineering Acoustics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Engineering Acoustics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Engineering Acoustics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A comprehensive evaluation of the basic theory for acoustics, noise and vibration control together with fundamentals of how this theoretical material can be applied to real world problems in the control of noise and vibration in aircraft, appliances, buildings, industry, and vehicles. The basic theory is presented in elementary form and only of sufficient complication necessary to solve real practical problems. Unnecessary advanced theoretical approaches are not included. In addition to the fundamental material discussed, chapters are included on human hearing and response to noise and vibration, acoustics and vibration transducers, instrumentation, noise and vibration measurements, and practical discussions concerning: community noise and vibration, interior and exterior noise of aircraft, road and rail vehicles, machinery noise and vibration sources, noise and vibration in rapid transit rail vehicles, automobiles, trucks, off road vehicles, and ships. In addition, extensive up to date useful references are included at the end of each chapter for further reading. The book concludes with a glossary on acoustics, noise and vibration

Engineering Acoustics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Engineering Acoustics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

3.13 Energy Acoustics

In enclosed spaces the wave acoustics approach is useful, particularly if the enclosed volume is small and simple in shape and the boundary conditions are well defined. In the case of rigid walls of simple geometry, the wave equation is used, and after the applicable boundary conditions are applied, the solutions for the natural (eigen) frequencies for the modes (standing waves) are found. See Refs. [23, 24], and chapter 6 in the Handbook of Acoustics [1] for more details. However, for large rooms with irregular shape and absorbing boundaries, the wave approach becomes impracticable and other approaches must be sought. The ray acoustics approach together with the multiple‐image‐source concept is useful in some room problems, particularly in auditorium design or in factory spaces where barriers are involved. However, in many cases a statistical approach where the energy in the sound field is considered is the most useful. See Refs. [25, 26] and also chapters 60–62 in the Handbook of Acoustics [1] for more detailed discussion of this approach. Some of the fundamental concepts are briefly described here.

For a plane wave progressing in one direction in a duct of unit cross‐section area, all of the sound energy in a column of fluid c metres in length must pass through the cross‐section in one second. Since the intensity 〈 I 〉 tis given by p 2 rms /ρc , then the total sound energy in the fluid column c metres long must also be equal to 〈 I 〉 t. The energy per unit volume ε (joules per cubic metre) is thus

(3.69) Engineering Acoustics - изображение 331

or

(3.70) Engineering Acoustics - изображение 332

The energy density ε may be derived by alternative means and is found to be the same as that given in Eq. (3.69)in most acoustic fields, except very close to sources of sound and in standing‐wave fields. In a room with negligibly small absorption in the air or at the boundaries, the sound field created by a source producing broadband sound will become very reverberant (the sound waves will reach a point with equal probability from any direction). In addition, for such a case the sound energy may be said to be diffuse if the energy density is the same anywhere in the room. For these conditions, the time‐averaged intensity incident on the walls (or on an imaginary surface from one side) is

(3.71) Engineering Acoustics - изображение 333

or

(3.72) Engineering Acoustics - изображение 334

In any real room, the walls will absorb some sound energy (and convert it into heat).

3.14 Near Field, Far Field, Direct Field, and Reverberant Field

Near to a source, we call the sound field, the near acoustic field . Far from the source, we call the field the far acoustic field . The extent of the near field depends on:

1 The type of source: (monopole, dipole, size of machine, type of machine, etc.)

2 Frequency of the sound.

In the near field of a source, the sound pressure and particle velocity tend to be very nearly out of phase (≈90°).

In the far field , the sound pressure and particle velocity are very nearly in phase. Note, far from any source, the sound wave fronts flatten out in curvature, and the waves appear to an observer to be like plane waves. In‐plane progressive waves, the sound pressure and particle velocity are in phase (provided there are no reflected waves). Thus far from a source (or in a plane progressive wave) p/u = ρc . Note ρc is a real number, so the sound pressure p and particle velocity u must be in phase.

Figure 3.17shows the example of a finite monopole source with a normal simple harmonic velocity amplitude U . On the surface of the monopole, the surface velocity is equal to the particle velocity. The particle velocity decreases in inverse proportion to the distance from the source center O .

Figure 317 Example of monopole On the monopole surface velocity of surface U - фото 335

Figure 3.17 Example of monopole. On the monopole surface, velocity of surface U = particle velocity in the fluid.

It is common to make the assumption that kr = 2 πf r/c = 10 is the boundary between the near and far fields. Note this is only one criterion and that there is no sharp boundary, but only a gradual transition. First we should also think of the type and the dimensions of the source and assume, say that r ≫ d , where d is a source dimension. We might say that r > 10 d should also be applied as a secondary criterion to determine when we are in the far field.

3.14.1 Reverberation

In a confined space there will be reflections, and far from the source the reflections will dominate. We call this reflection‐dominated region the reverberant field . The region where reflections are unimportant and where a doubling of distance results in a sound pressure drop of 6 dB is called the free or direct field (see Figure 3.18).

Figure 318 Sound pressure level in an interior sound field 3142 Sound - фото 336

Figure 3.18 Sound pressure level in an interior sound field.

3.14.2 Sound Absorption

The sound absorption coefficient α of sound‐absorbing materials (curtains, drapes, carpets, clothes, fiberglass, acoustical foams, etc.), is defined as

373 Note that α also depends on the - фото 337 373 Note that α also depends on the angle of incidence The absorption - фото 338

(3.73) Note that α also depends on the angle of incidence The absorption coefficient - фото 339

Note that α also depends on the angle of incidence. The absorption coefficient of materials depends on frequency as well. Thicker materials absorb more sound energy (particularly important at low frequency). See Figure 3.19.

Figure 319 Sound absorption coefficient α of typical absorbing materials as a - фото 340

Figure 3.19 Sound absorption coefficient α of typical absorbing materials as a function of frequency.

If all the sound energy is absorbed, α = 1 (none reflected). If no sound energy is absorbed, α = 0:

картинка 341

If α = 1, the sound absorption is perfect (e.g. an open window).

The behavior of sound‐absorbing materials is described in more detail in Chapter 9of this book.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Engineering Acoustics»

Представляем Вашему вниманию похожие книги на «Engineering Acoustics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Engineering Acoustics»

Обсуждение, отзывы о книге «Engineering Acoustics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x