Malcolm J. Crocker - Engineering Acoustics

Здесь есть возможность читать онлайн «Malcolm J. Crocker - Engineering Acoustics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Engineering Acoustics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Engineering Acoustics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A comprehensive evaluation of the basic theory for acoustics, noise and vibration control together with fundamentals of how this theoretical material can be applied to real world problems in the control of noise and vibration in aircraft, appliances, buildings, industry, and vehicles. The basic theory is presented in elementary form and only of sufficient complication necessary to solve real practical problems. Unnecessary advanced theoretical approaches are not included. In addition to the fundamental material discussed, chapters are included on human hearing and response to noise and vibration, acoustics and vibration transducers, instrumentation, noise and vibration measurements, and practical discussions concerning: community noise and vibration, interior and exterior noise of aircraft, road and rail vehicles, machinery noise and vibration sources, noise and vibration in rapid transit rail vehicles, automobiles, trucks, off road vehicles, and ships. In addition, extensive up to date useful references are included at the end of each chapter for further reading. The book concludes with a glossary on acoustics, noise and vibration

Engineering Acoustics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Engineering Acoustics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

3.15.1 Critical Distance

The critical distance r c(or sometimes called the reverberation radius) is defined as the distance from the sound source where the direct field and reverberant field contributions to p 2 rmsare equal:

(3.79) Engineering Acoustics - изображение 363

thus,

(3.80) Engineering Acoustics - изображение 364

Figure 3.23gives a plot of Eq. (3.78)(the so‐called room equation).

Figure 323 Sound pressure level in a room relative to sound power level as a - фото 365

Figure 3.23 Sound pressure level in a room (relative to sound power level) as a function of distance r from sound source.

3.15.2 Noise Reduction

If we are situated in the reverberant field, we may show from Eq. (3.78)that the noise level reduction, Δ L , achieved by increasing the sound absorption is

(3.81) 382 Then A S is sometimes known as - фото 366

(3.82) Then A S is sometimes known as the absorption area m 2sabins This may be - фото 367

Then A = S картинка 368is sometimes known as the absorption area, m 2(sabins). This may be assumed to be the area of perfect absorbing material, m 2(like the area of a perfect open window that absorbs 100% of the sound energy falling on it). If we consider the sound field in a room with a uniform energy density ε created by a sound source that is suddenly stopped, then the sound pressure level in the room will decrease.

By considering the sound energy radiated into a room by a directional broadband noise source of sound power W , we may sum together the mean squares of the sound pressure contributions caused by the direct and reverberant fields and after taking logarithms obtain the sound pressure level in the room:

(3.83) Engineering Acoustics - изображение 369

where Q θ,ϕis the directivity factor of the source (see Section 3.9) and R is the so‐called room constant:

(3.84) Engineering Acoustics - изображение 370

A plot of the sound pressure level against distance from the source is given for various room constants in Figure 3.23. It is seen that there are several different regions. The near and far fields depend on the type of source [21] and the free field and reverberant field. The free field is the region where the direct term Q θ,ϕ /r 2dominates, and the reverberant field is the region where the reverberant term 4/ R in Eq. (3.83)dominates. The so‐called critical distance r c= ( Q θ,ϕ R/ 16π) 1/2occurs where the two terms are equal.

3.16 Sound Radiation From Idealized Structures

The sound radiation from plates and cylinders in bending (flexural) vibration is discussed in Refs. [9, 27] and chapter 10 in the Handbook of Acoustics [1]. There are interesting phenomena observed with free‐bending waves. Unlike sound waves, these are dispersive and travel faster at higher frequency. The bending‐wave speed is c b= ( ωκc l) 1/2, where κ is the radius of gyration h /(12) 1/2for a rectangular cross‐section, h is the thickness, and c Lis the longitudinal wave speed { E/ [ ρ (1 − σ 2)]} 1/2, where E is Young's modulus of elasticity, ρ is the material density, and σ is Poisson's ratio. When the bending‐wave speed equals the speed of sound in air, the frequency is called the critical frequency (see Figure 3.24). The critical frequency is

(3.85) Engineering Acoustics - изображение 371

Figure 324 Dependence on frequency of bendingwave speed c bon a beam or panel - фото 372

Figure 3.24 Dependence on frequency of bending‐wave speed c bon a beam or panel and wave speed in air c .

Above this frequency, f c, the coincidence effect is observed because the bending wavelength λ bis greater than the wavelength in air λ ( Figure 3.25), and trace wave matching always occurs for the sound waves in air at some angle of incidence (see Figure 3.26). This has important consequences for the sound radiation from structures and also for the sound transmitted through the structures from one air space to the other (see Chapter 12of this book).

Figure 325 Variation with frequency of bending wavelength λ bon a beam or - фото 373

Figure 3.25 Variation with frequency of bending wavelength λ bon a beam or panel and wavelength in air λ .

Figure 326 Diagram showing trace wave matching between waves in air of - фото 374

Figure 3.26 Diagram showing trace wave matching between waves in air of wavelength λ and waves in panel of trace wavelength λ T.

For free‐bending waves on infinite plates above the critical frequency, the plate radiates efficiently, while below this frequency (theoretically) the plate cannot radiate any sound energy at all [27]. For finite plates, reflection of the bending waves at the edges of the plates causes standing waves that allow radiation (although inefficient) from the plate corners or edges even below the critical frequency. In the plate center, radiation from adjacent quarter‐wave areas cancels. But radiation from the plate corners and edges, which are normally separated sufficiently in acoustic wavelengths, does not cancel. At very low frequency, sound is radiated mostly by corner modes, then up to the critical frequency, mostly by edge modes. Above the critical frequency the radiation is caused by surface modes with which the whole plate radiates efficiently (see Figure 3.27). Radiation from bending waves in plates and cylinders is discussed in detail in Refs. [9, 27] and chapter 10 of the Handbook of Acoustics [1]. Figure 3.28shows some comparisons between theory and experiment for the level of the radiation efficiencies for sound radiation for several practical cases of simply-supported and clamped panel structures with acoustical and point mechanical excitation.

Figure 327 Wavelength relations and effective radiating areas for corner - фото 375

Figure 3.27 Wavelength relations and effective radiating areas for corner, edge, and surface modes. The acoustic wavelength is λ ; while λ bxand λ byare the bending wavelengths in the x‐ and y‐ directions, respectively. (see also the Handbook of Acoustics [1], chapter 1.)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Engineering Acoustics»

Представляем Вашему вниманию похожие книги на «Engineering Acoustics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Engineering Acoustics»

Обсуждение, отзывы о книге «Engineering Acoustics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x