Malcolm J. Crocker - Engineering Acoustics

Здесь есть возможность читать онлайн «Malcolm J. Crocker - Engineering Acoustics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Engineering Acoustics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Engineering Acoustics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A comprehensive evaluation of the basic theory for acoustics, noise and vibration control together with fundamentals of how this theoretical material can be applied to real world problems in the control of noise and vibration in aircraft, appliances, buildings, industry, and vehicles. The basic theory is presented in elementary form and only of sufficient complication necessary to solve real practical problems. Unnecessary advanced theoretical approaches are not included. In addition to the fundamental material discussed, chapters are included on human hearing and response to noise and vibration, acoustics and vibration transducers, instrumentation, noise and vibration measurements, and practical discussions concerning: community noise and vibration, interior and exterior noise of aircraft, road and rail vehicles, machinery noise and vibration sources, noise and vibration in rapid transit rail vehicles, automobiles, trucks, off road vehicles, and ships. In addition, extensive up to date useful references are included at the end of each chapter for further reading. The book concludes with a glossary on acoustics, noise and vibration

Engineering Acoustics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Engineering Acoustics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
The mode shapes are given by 10 13 262 where A nis an arbitrary - фото 180

The mode shapes are given by [10, 13]

(2.62) where A nis an arbitrary constant Thus the total solution for the free - фото 181

where A nis an arbitrary constant. Thus, the total solution for the free transverse vibration of the cantilever beam is

(2.63) Figure 216shows the first four mode shapes for a cantilever beam Example - фото 182

Figure 2.16shows the first four mode shapes for a cantilever beam.

Example 2.10

Determine the natural frequencies of a uniform beam which is simply supported at both ends.

Solution

Applying the boundary conditions w = 0 and Engineering Acoustics - изображение 183at x = 0 in Eq. (2.54)leads to C 1+ C 3= 0 and − λ 2 C 1+ λ 2 C 3= 0. These equations are satisfied if C 1= C 3= 0.

Applying the boundary conditions w = 0 and Engineering Acoustics - изображение 184at x = L in Eq. (2.54)yields

C 2sin( λL ) + C 4sinh( λL ) = 0 and − λ 2 C 2sin( λL ) + λ 2 C 4sinh( λL ) = 0. Therefore, nontrivial solutions are obtained when C 4= 0 and sin( λL ) = 0, so λ = / L (for n = 1,2,…). Since λ = ( ω 2 ρS / EI ) 1/4, we find that the natural frequencies ω nare given by

(2.64) Example 211 Determine the lowest natural frequency for a cantilever steel - фото 185

Example 2.11

Determine the lowest natural frequency for a cantilever steel beam of thickness a = 6 mm, width b = 10 mm, and length L = 0.5 m. Repeat the calculation when the beam is simply supported at both ends.

Solution

For steel we have E = 210 × 10 9N/m 2and ρ = 7800 kg/m 3. The cross‐sectional moment of inertia of a rectangular beam is I = ab 3/12 = 0.006 × (0.01) 3/12 = 5 × 10 −10m 4. The cross‐sectional area of the beam is S = 0.006 × 0.01 = 6 × 10 −5m 2. Then,

If the beam is now simply supported we use Eq 264with n 1 - фото 186

If the beam is now simply supported, we use Eq. (2.64)with n = 1,

Figure 216 First four mode shapes of a cantilever beam 252 Vibration of - фото 187

Figure 216 First four mode shapes of a cantilever beam 252 Vibration of - фото 188

Figure 2.16 First four mode shapes of a cantilever beam.

2.5.2 Vibration of Thin Plates

The present section is concerned with systems possessing two dimensions which are large compared with the third, e.g. plates whose lengths and widths are much greater than their thicknesses. There are numerous applications of vibrating plates in electroacoustical equipment such as loudspeakers, microphones, earphones, ultrasonic transducers, etc. In addition, plates can be found as constituting elements in several mechanical systems such as cars, trains, aircraft, and machinery. Plates, considered as plane systems, are a particular case of shells, whose surface may be of any shape. The general theory of vibrations of shells, which constitutes a large branch of mechanics, has been discussed by Leissa [14]. In 1828, Poisson and Cauchy established, for the first time, an approximate differential equation for flexural vibrations of a plate of infinite extent, and Poisson obtained an approximate solution for a particular case of the vibration of a circular plate. The development by Ritz in 1909 of the method for calculating the bending of plates on the basis of the energy balance was an important advance. This method made it possible to solve more complicated cases of the vibration of plates having different shapes [11]. Further advances were accomplished by the accurate calculation of the vibration distribution in rectangular plates with uniform and mixed boundary conditions [15].

a) Free Vibrations of a Rectangular Plate

For the requirements of acoustical engineering, it is sufficient to consider the flexural vibrations of thin plates ( λ >> h , where h is the thickness of the plate) to which we can apply an approximate method analogous to that employed for bar [11].

The assumptions are:

1 The transverse cross‐sections of the plate still remain plane in the presence of strains, and

2 Neither longitudinal nor transverse strains occur on the middle (neutral) plane.

These conditions are satisfied approximately when the flexural wavelength is at least equal to a six times the thickness h of the plate. Under this assumption, the wave equation for transverse vibration of the plate is [14]

(2.65) where W xyt is the instantaneous transverse displacement ρ is the - фото 189

where W ( x,y,t ) is the instantaneous transverse displacement, ρ is the density of the plate, B = Eh 3/12(1 − ν 2) is the stiffness of the plate for bending, ν is the Poisson's ratio, E is the modulus of elasticity (Young's modulus) and f ( x,y,t ) are the external forces referring to unit surface area of the plate. The sum of the first three terms of Eq. (2.65)is a double Laplacian of W , ∇ 4 W , expressed in rectangular coordinates. It is useful to define the solution for steady‐state conditions as

(2.66) where W 0 xy is the amplitude of the transverse displacement A vibrating - фото 190

where W 0( x,y ) is the amplitude of the transverse displacement.

A vibrating structure, such as a plate, at any instant contains some kinetic energy and some strain (or potential) energy. The kinetic energy is associated with the mass and the strain energy is associated with the stiffness. In addition, any structure also dissipates some energy as it deforms. This conversion of ordered mechanical energy into thermal energy is called damping. A simple way to describe the energy loss is given by the analysis of the one‐dimensional system of Eq. (2.17). Thus, for sinusoidal vibration, use of a spring with an appropriately defined stiffness is completely equivalent to the use of an elastic spring and a dashpot. The internal losses in a plate arise not because of the motion of the plate as a whole body, but depend on the mutual displacements of the neighboring elements of the plate, and these are proportional to the changes in time of ∇ 4 W . Therefore, in order to account for energy dissipation in a plate, one may simply introduce a complex modulus of elasticity

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Engineering Acoustics»

Представляем Вашему вниманию похожие книги на «Engineering Acoustics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Engineering Acoustics»

Обсуждение, отзывы о книге «Engineering Acoustics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x