Malcolm J. Crocker - Engineering Acoustics

Здесь есть возможность читать онлайн «Malcolm J. Crocker - Engineering Acoustics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Engineering Acoustics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Engineering Acoustics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A comprehensive evaluation of the basic theory for acoustics, noise and vibration control together with fundamentals of how this theoretical material can be applied to real world problems in the control of noise and vibration in aircraft, appliances, buildings, industry, and vehicles. The basic theory is presented in elementary form and only of sufficient complication necessary to solve real practical problems. Unnecessary advanced theoretical approaches are not included. In addition to the fundamental material discussed, chapters are included on human hearing and response to noise and vibration, acoustics and vibration transducers, instrumentation, noise and vibration measurements, and practical discussions concerning: community noise and vibration, interior and exterior noise of aircraft, road and rail vehicles, machinery noise and vibration sources, noise and vibration in rapid transit rail vehicles, automobiles, trucks, off road vehicles, and ships. In addition, extensive up to date useful references are included at the end of each chapter for further reading. The book concludes with a glossary on acoustics, noise and vibration

Engineering Acoustics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Engineering Acoustics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Example 2.5

It is illustrative to consider an example of a two‐degree‐of‐freedom system, as the one shown in Figure 2.11, because its analysis can easily be extrapolated to systems with many degrees of freedom.

Solution

The two‐coordinates x 1and x 2uniquely define the position of the system illustrated in Figure 2.11if it is constrained to move in the x ‐direction. The equations of motion of the system are:

(2.29a) Engineering Acoustics - изображение 126

and

(2.29b) Engineering Acoustics - изображение 127

We observe that the equations of motion are coupled, that is to say the motion x 1is influenced by the motion x 2and vice versa. Equation (2.29)can be written in matrix form as

(2.30) Engineering Acoustics - изображение 128

where q= and Equation 226gives the characteristic equation 2 - фото 129, and Equation 226gives the characteristic equation 231 - фото 130and Equation 226gives the characteristic equation 231 For simplicity - фото 131.

Equation (2.26)gives the characteristic equation

(2.31) For simplicity consider the situation where m 1 m 2 m and k 1 k 2 k - фото 132

For simplicity, consider the situation where m 1= m 2= m and k 1= k 2= k . Then, Eq. (2.31)becomes

(2.32) Solving Eq 232gives the natural frequencies of the system as 233 - фото 133

Solving Eq. (2.32)gives the natural frequencies of the system as

(2.33) Note that Eq 232has four roots the additional two being ω 1and ω 2 - фото 134

Note that Eq. (2.32)has four roots, the additional two being − ω 1and − ω 2. However, since these negative frequencies have no physical meaning, they can be ignored. For each positive natural frequency there is an associated eigenvector that is obtained from Eq. (2.27). Substitution of Eq. (2.33)into Eq. (2.27)and solving for A i, yields:

(2.34a) and 234b where X 1and X 2are the elements of vector A i Equations - фото 135

and

(2.34b) where X 1and X 2are the elements of vector A i Equations 234aand 234bare - фото 136

where X 1and X 2are the elements of vector A i. Equations (2.34a)and (2.34b)are homogenous, so that no unique solution is possible. Indeed, a solution with all its components multiplied by the same constant is also a solution [11]. Choosing arbitrarily X 1= 1 and solving Eq. (2.34)we get the eigenvectors

When used to describe the motion of a multidegree of freedom system the mode - фото 137

When used to describe the motion of a multi‐degree of freedom system, the mode shape refers to the amplitude ratio. These ratios are possible to obtain because their absolute values are arbitrary [12]. Thus, we express the mode shapes as the ratio of the amplitudes X 1/ X 2. Then, for ω 1, X 1/ X 2= 0.618 and for ω 2, X 1/ X 2= −1.618. These ratios can be represented in the mode plot of Figure 2.12. We note that when this simple two‐degree of freedom system vibrates at the first (fundamental) natural frequency ω 1, the two masses vibrate in phase ( Figure 2.12a). When the system vibrates at the second natural frequency ω 2, the two masses vibrate out of phase ( Figure 2.12b).

Figure 211 Twodegreeoffreedom system Figure 212 Mode shapes for the - фото 138

Figure 2.11 Two‐degree‐of‐freedom system.

Figure 212 Mode shapes for the twodegree of freedom system shown in Figure - фото 139

Figure 2.12 Mode shapes for the two‐degree of freedom system shown in Figure 2.11; (a) first mode, (b) second mode.

2.4.2 Forced Vibration – Undamped

By forced vibration, we mean that the system is vibrating under the influence of continuous (external) forces that do not cease. The total response of a multi‐degree of freedom system due to a force excitation is the sum of a homogeneous solution and a particular solution. The homogenous solution depends upon the system properties while the particular solution is the response due to the particular form of excitation. The homogenous solution is often ignored for a system subjected to a periodic vibration for being of lesser practical importance than the particular solution. For a general form of excitation, a closed‐form solution of a multi‐degree of freedom system can be very difficult to obtain and numerical methods are often used.

The equations of motion of an n ‐degree‐of‐freedom undamped linear system excited by simple harmonic forces at some arbitrary angular forcing frequency ω (all excitation terms at the same phase) can be expressed in matrix form as

(2.35) where Fis an n dimensional complex column vector of dynamic amplitude forces - фото 140

where Fis an n ‐dimensional complex column vector of dynamic amplitude forces. We assume harmonic solutions of the form

(2.36) where Ais a vector of undetermined amplitudes Substituting Eq 236into - фото 141

where Ais a vector of undetermined amplitudes. Substituting Eq. (2.36)into (2.35)leads to

(2.37) A unique solution of Eq 237exists unless 238 which has the same form - фото 142

A unique solution of Eq. (2.37)exists unless

(2.38) which has the same form as Eq 226 Equation 238is satisfied only when - фото 143

which has the same form as Eq. (2.26). Equation (2.38)is satisfied only when the forcing frequency coincides with one of the system's natural frequencies. In this condition, called resonance, the response of the system grows linearly with time and thus use of the solution Eq. (2.36)is unsuitable. When a solution of Eq. (2.37)exists, the amplitudes can be determined as [13]

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Engineering Acoustics»

Представляем Вашему вниманию похожие книги на «Engineering Acoustics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Engineering Acoustics»

Обсуждение, отзывы о книге «Engineering Acoustics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x