Malcolm J. Crocker - Engineering Acoustics

Здесь есть возможность читать онлайн «Malcolm J. Crocker - Engineering Acoustics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Engineering Acoustics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Engineering Acoustics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A comprehensive evaluation of the basic theory for acoustics, noise and vibration control together with fundamentals of how this theoretical material can be applied to real world problems in the control of noise and vibration in aircraft, appliances, buildings, industry, and vehicles. The basic theory is presented in elementary form and only of sufficient complication necessary to solve real practical problems. Unnecessary advanced theoretical approaches are not included. In addition to the fundamental material discussed, chapters are included on human hearing and response to noise and vibration, acoustics and vibration transducers, instrumentation, noise and vibration measurements, and practical discussions concerning: community noise and vibration, interior and exterior noise of aircraft, road and rail vehicles, machinery noise and vibration sources, noise and vibration in rapid transit rail vehicles, automobiles, trucks, off road vehicles, and ships. In addition, extensive up to date useful references are included at the end of each chapter for further reading. The book concludes with a glossary on acoustics, noise and vibration

Engineering Acoustics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Engineering Acoustics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Thus the static deflection d of the mass is

(2.8a) Engineering Acoustics - изображение 88

The distance d is normally called the static deflection of the mass; we define a new displacement coordinate system, where Y = 0 is the location of the mass after the gravity force is allowed to compress the spring.

Suppose now we displace the mass a distance y from its equilibrium position and release it; then it will oscillate about this position. We will measure the deflection from the equilibrium position of the mass (see Figure 2.5b). Newton's law states that force is equal to mass × acceleration. Forces and deflections are again assumed positive upward, and thus

(2.9) Engineering Acoustics - изображение 89

Let us assume a solution to Eq. (2.9)of the form y = A sin( ωt + φ ). Then upon substitution into Eq. (2.9)we obtain

Engineering Acoustics - изображение 90

We see our solution satisfies Eq. (2.9)only if

Engineering Acoustics - изображение 91

The system vibrates with free vibration at an angular frequency ω rad/s. This frequency, ω , which is generally known as the natural angular frequency, depends only on the stiffness K and mass M . We normally signify this so‐called natural frequency with the subscript n . And so

Engineering Acoustics - изображение 92

and from Eq. (3.2)

(2.10) Engineering Acoustics - изображение 93

The frequency, f nhertz, is known as the natural frequency of the mass on the spring. This result, Eq. (2.10), looks physically correct since if K increases (with M constant), f nincreases. If M increases with K constant, f ndecreases. These are the results we also find in practice.

Example 2.2

A machine of mass 600 kg is mounted on four springs of stiffness 2 × 10 5N/m each. Determine the natural frequency of the system

Solution

We model the system as a hanging spring‐mass system (see Figure 2.5). Equation (2.9)governs the displacement of the machine from its static‐equilibrium position. Since we have four equal springs, the equivalent stiffness is 4 × 2 × 10 5= 8 × 10 5N/m. The natural frequency is then determined using Eq. (2.10)as

We have seen that a solution to Eq 29is y A sin ωt ϕ or the same as - фото 94

We have seen that a solution to Eq. (2.9)is y = A sin( ωt + ϕ ) or the same as Eq. (2.3). Hence we know that any system that has a restoring force that is proportional to the displacement will have a displacement that is simple harmonic . This is an alternative definition to that given in Section 2.2for simple harmonic motion .

b) Free Vibration – Damped

Many mechanical systems can be adequately described by the simple mass–spring system just discussed above. However, for some purposes it is necessary to include the effects of losses (sometimes called damping). This is normally done by including a viscous damper in the system (see Figure 2.6). See Refs. [8, 9] for further discussion on passive damping. With viscous or “coulomb” damping the friction or damping force F dis assumed to be proportional to the velocity, dy/dt . If the constant of proportionality is R , then the damping force F don the mass is

(2.11) Engineering Acoustics - изображение 95

and Eq. (2.9)becomes

(2.12) Engineering Acoustics - изображение 96

or equivalently

(2.13) Engineering Acoustics - изображение 97

where the dots represent single and double differentiation with respect to time.

Figure 26 Movement of damped simple system The solution of Eq 213is most - фото 98

Figure 2.6 Movement of damped simple system.

The solution of Eq. (2.13)is most conveniently found by assuming a solution of the form: y is the real part of A e jλtwhere Ais a complex number and λ is an arbitrary constant to be determined. By substituting y = A e jλtinto Eq. (2.13)and assuming that the damping constant R is small, R < (4 MK) 1/2(which is true in most engineering applications), the solution is found that:

(2.14) Here ω dis known as the damped natural angular frequency 215 where ω - фото 99

Here ω dis known as the damped “natural” angular frequency:

(2.15) where ω nis the undamped natural frequency The motion described by Eq - фото 100

where ω nis the undamped natural frequency The motion described by Eq 214is plotted in Figure 27 Figure 27 - фото 101. The motion described by Eq. (2.14)is plotted in Figure 2.7.

Figure 27 Motion of a damped massspring system R 4 MK 12 The - фото 102

Figure 2.7 Motion of a damped mass–spring system, R < (4 MK ) 1/2.

The amplitude of the motion decreases with time unlike that for undamped motion (see Figure 2.3). If the damping is increased until R equals (4 MK ) 1/2, the damping is then called critical, R crit= (4 MK ) 1/2. In this case, if the mass in Figure 2.6is displaced, it gradually returns to its equilibrium position and the displacement never becomes negative. In other words, there is no oscillation or vibration. If R > (4 MK ) 1/2, the system is said to be overdamped.

The ratio of the damping constant R to the critical damping constant R critis called the damping ratio δ :

(2.16) In most engineering cases the damping ratio δ in a structure is hard to - фото 103

In most engineering cases, the damping ratio, δ , in a structure is hard to predict and is of the order of 0.01–0.1. There are, however, several ways to measure damping experimentally [8, 9].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Engineering Acoustics»

Представляем Вашему вниманию похожие книги на «Engineering Acoustics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Engineering Acoustics»

Обсуждение, отзывы о книге «Engineering Acoustics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x