Malcolm J. Crocker - Engineering Acoustics

Здесь есть возможность читать онлайн «Malcolm J. Crocker - Engineering Acoustics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Engineering Acoustics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Engineering Acoustics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A comprehensive evaluation of the basic theory for acoustics, noise and vibration control together with fundamentals of how this theoretical material can be applied to real world problems in the control of noise and vibration in aircraft, appliances, buildings, industry, and vehicles. The basic theory is presented in elementary form and only of sufficient complication necessary to solve real practical problems. Unnecessary advanced theoretical approaches are not included. In addition to the fundamental material discussed, chapters are included on human hearing and response to noise and vibration, acoustics and vibration transducers, instrumentation, noise and vibration measurements, and practical discussions concerning: community noise and vibration, interior and exterior noise of aircraft, road and rail vehicles, machinery noise and vibration sources, noise and vibration in rapid transit rail vehicles, automobiles, trucks, off road vehicles, and ships. In addition, extensive up to date useful references are included at the end of each chapter for further reading. The book concludes with a glossary on acoustics, noise and vibration

Engineering Acoustics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Engineering Acoustics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.1) Engineering Acoustics - изображение 73

Figure 23 Simple harmonic motion with initial phase angle ϕ The time T is - фото 74

Figure 2.3 Simple harmonic motion with initial phase angle ϕ .

The time T is known as the period and is usually measured in seconds. From Figures 2.2and 2.3, we see that the motion repeats itself every time ωt increases by 2 π , since sin(0) = sin(2 π ) = sin(4 π ) = 0, and so on. Thus ωT = 2 π and from Eq. (2.1),

(2.2) картинка 75

The angular frequency, ω , is expressed in radians per second (rad/s).

The motion described by the displacement y in Figure 2.2or the projection OP on the X‐ or Y‐ axes in Figure 2.2is said to be simple harmonic . We must now discuss something called the initial phase angle , which is sometimes just called phase . For the case we have chosen in Figure 2.2, the phase angle is zero. If, instead, we start counting time from when the vector points in the direction OP 1, as shown in Figure 2.3, and we let the angle XOP 1= ϕ , this is equivalent to moving the time origin t seconds to the right in Figure 2.2. Time is started when P is at P 1and thus the initial displacement is A sin( ϕ ). The initial phase angle is ϕ . After time t , P 1has moved to P 2and the displacement

(2.3) Engineering Acoustics - изображение 76

If the initial phase angle ϕ = 0°, then y = A sin( ωt ); if the phase angle ϕ = 90°, then y = A sin( ωt + π /2) = A cos( ωt ). For mathematical convenience, complex exponential notation is often used. If the displacement is written as

(2.3a) картинка 77

and we remember that A e jωt= A [cos( ωt ) + j sin( ωt )], we see in Figure 2.1that the real part of Eq. (2.3a)is represented by the projection of the point P onto the x ‐axis, A cos( ωt ), and of the point P onto the Y‐ (or imaginary axis), A sin( ωt ). Simple harmonic motion, then, is often written as the real part of A e jωt, or in the more general form y = Ae j(ωt + ϕ). If the constant A is made complex, then the displacement can be written as the real part of y = A e jωt, where A= Ae jϕ.

2.2.2 Velocity and Acceleration

So far we have examined the displacement y of a point. Note that, when the displacement is in the OY direction, we say it is positive; when it is in the opposite direction to OY , we say it is negative. Displacement, velocity, and acceleration are really vector quantities in mathematics; that is, they have magnitude and direction. The velocity v of a point is the rate of change of position with time of the point x in m/s. The acceleration a is the rate of change of velocity with time. Thus, using simple calculus:

(2.4) and 25 Equations are plotted in Figure 24 - фото 78

and

(2.5) Equations are plotted in Figure 24 Figure 24 Displacement velocity and - фото 79

Equations are plotted in Figure 2.4.

Figure 24 Displacement velocity and acceleration Note by trigonometric - фото 80

Figure 2.4 Displacement, velocity, and acceleration.

Note, by trigonometric manipulation we can rewrite Eqs. (2.4)and (2.5)as (2.6)and (2.7):

(2.6) and 27 and from Eq 23we see that a ω 2 y Equations tell us that - фото 81

and

(2.7) and from Eq 23we see that a ω 2 y Equations tell us that for simple - фото 82

and from Eq. (2.3)we see that a = − ω 2 y .

Equations tell us that for simple harmonic motion the amplitude of the velocity is ω or 2 πf greater than the amplitude of the displacement, while the amplitude of the acceleration is ω 2or (2 πf ) 2greater. The phase of the velocity is π /2 or 90° ahead of the displacement, while the acceleration is π or 180° ahead of the displacement.

Note we could have come to the same conclusions and much more quickly if we had used the complex exponential notation. Writing

Engineering Acoustics - изображение 83

then

Engineering Acoustics - изображение 84

and

Example 21 In a simple harmonic motion of frequency 10 Hz the displacement - фото 85

Example 2.1

In a simple harmonic motion of frequency 10 Hz, the displacement amplitude is 2 mm. Calculate the maximum velocity amplitude and maximum acceleration amplitude.

Solution

Since ω = 2 πf = 2 π (10) = 62.83 rad/s. The velocity amplitude is calculated as

ν = ω × 2 = 62.83 × 2 = 125.7 mm/s and the acceleration amplitude is a = ω 2× 2 = (62.83) 2× 2 = 7896 mm/s 2.

2.3 Vibrating Systems

2.3.1 Mass–Spring System

a) Free Vibration – Undamped

Suppose a mass of M kilogram is placed on a spring of stiffness K newton‐metre (see Figure 2.5a), and the mass is allowed to sink down a distance d metres to its equilibrium position under its own weight Mg newtons, where g is the acceleration of gravity 9.81 m/s 2. Taking forces and deflections to be positive upward gives

(2.8) Engineering Acoustics - изображение 86

Figure 25 Movement of mass on a spring a static deflection due to gravity - фото 87

Figure 2.5 Movement of mass on a spring: (a) static deflection due to gravity and (b) oscillation due to initial displacement y 0.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Engineering Acoustics»

Представляем Вашему вниманию похожие книги на «Engineering Acoustics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Engineering Acoustics»

Обсуждение, отзывы о книге «Engineering Acoustics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x