Malcolm J. Crocker - Engineering Acoustics

Здесь есть возможность читать онлайн «Malcolm J. Crocker - Engineering Acoustics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Engineering Acoustics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Engineering Acoustics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A comprehensive evaluation of the basic theory for acoustics, noise and vibration control together with fundamentals of how this theoretical material can be applied to real world problems in the control of noise and vibration in aircraft, appliances, buildings, industry, and vehicles. The basic theory is presented in elementary form and only of sufficient complication necessary to solve real practical problems. Unnecessary advanced theoretical approaches are not included. In addition to the fundamental material discussed, chapters are included on human hearing and response to noise and vibration, acoustics and vibration transducers, instrumentation, noise and vibration measurements, and practical discussions concerning: community noise and vibration, interior and exterior noise of aircraft, road and rail vehicles, machinery noise and vibration sources, noise and vibration in rapid transit rail vehicles, automobiles, trucks, off road vehicles, and ships. In addition, extensive up to date useful references are included at the end of each chapter for further reading. The book concludes with a glossary on acoustics, noise and vibration

Engineering Acoustics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Engineering Acoustics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Example

As an illustrative example consider the forced two‐degree of freedom system of Example 2.6, where k 1= k 2= k and m 1= m 2= m . In addition, two equal dampers of damping constant R are connected in parallel to the springs. The displacement amplitudes A 1and A 2can be determined from Eq. (2.50). Figure 2.14shows the response of ∣ A 1∣ and ∣ A 2∣ with the forcing frequency. Note that both ∣ A 1∣ and ∣ A 2∣ reach maximum values at the same frequencies given by Eq. (2.33). It is also noted that the mass m 1theoretically does not move when the excitation frequency is картинка 163.

Example 2.9

A small electric motor is fixed on a rigid rectangular plate resting on springs. The total mass of the motor and the plate is 45.5 kg. The system is found to have a natural frequency of 15.9 Hz. It is proposed to suppress the vibration when the motor operates at 764 rpm by attaching an undamped vibration absorber underneath the motor, as shown in Figure 2.15. Determine the necessary stiffness of the absorber if m 2= 4.5 kg.

Solution

The natural frequency of the original system is 15.9 Hz = 100 rad/s. Then, the stiffness k 1= m 1( ω ) 2= 45.5(100) 2= 455 000 N/m. Now, the operating frequency of the motor is 764/60 = 12.7 Hz = 80 rad/s, so the absorber should have the natural frequency Engineering Acoustics - изображение 16480 rad/s. Then, the total stiffness of the absorber is

Figure 214 Forced response spectra of a damped twodegree of freedom system - фото 165

Figure 214 Forced response spectra of a damped twodegree of freedom system - фото 166

Figure 2.14 Forced response spectra of a damped two‐degree of freedom system.

Figure 215 Undamped dynamic vibration absorber defined in Example 29 25 - фото 167

Figure 2.15 Undamped dynamic vibration absorber defined in Example 2.9.

2.5 Continuous Systems

All structural systems such as beams, columns, and plates are continuous systems with an infinite number of degrees of freedom. Consequently, a continuous system has an infinite number of natural frequencies and corresponding mode shapes. Although easier, modeling a structure using a finite number of degrees of freedom provides just an approximation of the behavior of the system. The analysis of continuous systems requires the solution of partial differential equations. However, analytical solutions to partial differential equations are often difficult to obtain and numerical or approximate methods are usually employed to analyze continuous systems in particular at high frequencies. However, flexural vibration of some common structural elements can be analytically studied. Sound radiation can be produced by the vibration of these structural elements. Such is the case of the vibration of thin beams, thin plates and thin cylindrical shells that will be discussed in the following sections.

2.5.1 Vibration of Beams

If we ignore the effects of axial loads, rotary inertia, and shear deformation, the equation governing the free transverse vibrations w ( x , t ) of a uniform beam is given by the Euler–Bernoulli beam theory as [10, 13]

(2.51) where E is the Youngs modulus ρ is the mass density I is the crosssectional - фото 168

where E is the Young's modulus, ρ is the mass density, I is the cross‐sectional moment of inertia, and S is the cross‐sectional area. Assuming harmonic vibrations in the form

(2.52) Engineering Acoustics - изображение 169

and substituting w ( x , t ) from Eq. (2.52)into Eq. (2.51)we get

(2.53) The solution of Eq 253is 254 where λ ω 2 ρS EI 14and the C s - фото 170

The solution of Eq. (2.53)is

(2.54) where λ ω 2 ρS EI 14and the C s are arbitrary constants that depend - фото 171

where λ = ( ω 2 ρS / EI ) 1/4and the C 's are arbitrary constants that depend upon the boundary conditions (the deflections, slope, bending moment, and shear force constraints). Classical boundary conditions for a beam are

(2.55) 256 257 A very important practical case - фото 172

(2.56) 257 A very important practical case is a cantilever beam clampedfree - фото 173

(2.57) A very important practical case is a cantilever beam clampedfree beam of - фото 174

A very important practical case is a cantilever beam (clamped‐free beam) of length L . In this case, the deflection and slope are zero at the clamped end, while the bending moment and shear force are zero at the free end, i.e.

(2.58) 259 Substituting the boundary conditions Eq 258and Eq 259into Eq - фото 175

(2.59) Substituting the boundary conditions Eq 258and Eq 259into Eq 254 - фото 176

Substituting the boundary conditions Eq. (2.58)and Eq. (2.59)into Eq. (2.54), we find that C 2= − C 4, and we obtain the equation

(2.60) The roots of the transcendental Eq 260can be obtained numerically The - фото 177

The roots of the transcendental Eq. (2.60)can be obtained numerically. The first four roots are λ 1 L = 1.875, λ 2 L = 4.694, λ 3 L = 7.855, and λ 4 L = 10.996. For large values of n , the roots can be calculated using the equation

(2.61) Engineering Acoustics - изображение 178

Noting that Engineering Acoustics - изображение 179, we can solve for ω nso that the first four natural frequencies of the cantilever beam are

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Engineering Acoustics»

Представляем Вашему вниманию похожие книги на «Engineering Acoustics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Engineering Acoustics»

Обсуждение, отзывы о книге «Engineering Acoustics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x