Encyclopedia of Glass Science, Technology, History, and Culture

Здесь есть возможность читать онлайн «Encyclopedia of Glass Science, Technology, History, and Culture» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Encyclopedia of Glass Science, Technology, History, and Culture: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Encyclopedia of Glass Science, Technology, History, and Culture»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A comprehensive and up-to-date encyclopedia to the fabrication, nature, properties, uses, and history of glass
 
The
has been designed to satisfy the needs and curiosity of a broad audience interested in the most varied aspects of material that is as old as the universe. As described in over 100 chapters and illustrated with 1100 figures, the practical importance of glass has increased over the ages since it was first man-made four millennia ago. The old-age glass vessels and window and stained glass now coexist with new high-tech products that include for example optical fibers, thin films, metallic, bioactive and hybrid organic-inorganic glasses, amorphous ices or all-solid-state batteries. 
In the form of scholarly introductions, the Encyclopedia chapters have been written by 151 noted experts working in 23 countries. They present at a consistent level and in a self-consistent manner these industrial, technological, scientific, historical and cultural aspects. Addressing the most recent fundamental advances in glass science and technology, as well as rapidly developing topics such as extra-terrestrial or biogenic glasses, this important guide:
Begins with industrial glassmaking Turns to glass structure and to physical, transport and chemical properties Deals with interactions with light, inorganic glass families and organically related glasses Considers a variety of environmental and energy issues And concludes with a long section on the history of glass as a material from Prehistory to modern glass science The
has been written not only for glass scientists and engineers in academia and industry, but also for material scientists as well as for art and industry historians. It represents a must-have, comprehensive guide to the myriad aspects this truly outstanding state of matter.

Encyclopedia of Glass Science, Technology, History, and Culture — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Encyclopedia of Glass Science, Technology, History, and Culture», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Another puzzling fact has been long ago pointed out by Kauzmann [10] who wondered what would happen if the entropy of a supercooled liquid were extrapolated down to temperatures much lower than the experimentally observed T g. The conclusion was that it would become lower than that of the isochemical crystal at a temperature T K, thus termed the Kauzmann temperature ( Table 2), which could suggest that the liquid undergoes a continuous phase transition toward the crystalline phase at T Kanalogous to the critical point of fluids.

One way out of the paradox implies kinetic arguments and assumes that the viscosity of the supercooled liquid diverges at a temperature close to T K. This assumption may be represented by the Vogel–Fulcher–Tammann (VFT) equation ( Chapter 4.1):

(11) where the temperature T 0of the viscosity divergence is actually close to the - фото 432

where the temperature T 0of the viscosity divergence is actually close to the Kauzmann temperature ( Table 2) even though they may depend on the specific sample and the method of measurement.

Another way out is to take with great caution the extrapolations of the heat capacity and other thermodynamic functions of the supercooled liquid. As long pointed out [e.g. 11], there is no current theory for these properties in liquid state analogous to the Einstein or Debye models that provide functional forms at all temperatures for heat capacities of crystals.

As derived from strikingly old questions in glass science, these counterintuitive features indicate that glasses cannot be described by equilibrium thermodynamic states only. Nonequilibrium thermodynamics is, therefore, likely to be useful to characterize glasses and the glass transition.

5 Nonequilibrium Thermodynamics of the Glass Transition

The questions raised by the Kauzmann paradox or the PD ratio clearly illustrate the need for a more fundamental thermodynamic description of the glass transition. Following the pioneering work of Tool [12, 13] and Davies and Jones [9], different approaches and phenomenological models have been developed to deal with the glass transition range itself, many within the framework of classical nonequilibrium thermodynamics [4, 11].

The starting point has been the phenomenological concept of fictive temperature ( T f) propounded by Tool [12, 13] to characterize the state of a relaxing system at any time. This temperature is similar to an order parameter ξ . It thus overcomes the limitations of the fixed limiting temperature T M, which characterizes only the point at which internal equilibrium is suddenly lost in a quenched state. On an analogous basis, a more detailed description is made in terms of two‐temperature thermodynamics [14] whereby the vibrational and configurational degrees of freedom are distinguished by a “classical” temperature for fast modes (phonons bath), and an effective temperature for the slow modes, respectively.

The first physical models have then relied on two different approaches. In free‐volume theories, one generally considers that the dynamics of the system is determined by the free space present around its atoms, which makes configurational rearrangements more or less easy. In entropy theories, among which that of Adam‐Gibbs is the best known [15], the same determining role is attributed to configurational entropy. In other words, these theories assign the strong increase of relaxation times with decreasing temperatures and the eventual structural freezing in to decreases of either free volume or configurational entropy. Other more recent theories of the glass transition rely on mode coupling, random first‐order transitions or energy‐landscape descriptions [e.g. 16]. These different approaches have the common goal of finding the exact expression for the structural relaxation time, or its distribution, as a function of controlling parameters such as temperature or pressure, or structural order parameter.

For the sake of simplicity, let us consider here conditions of constant pressure. If the additional parameter ξ is taken into account, the total differential of the enthalpy of a system can be written as the sum of two contributions (considering pressure, the generalization to three contributions would be obvious):

(12) The isobaric heat capacity is written as 13 The first term on the - фото 433

The isobaric heat capacity is written as:

( 13) The first term on the righthand side is the heat capacity at constant ξ ie - фото 434

The first term on the right‐hand side is the heat capacity at constant ξ , i.e. картинка 435, and the second, the configurational contribution as defined by Eq 6 To account for the kinetic nature of the glass - фото 436as defined by Eq. (6). To account for the kinetic nature of the glass transition, it is then necessary to rewrite Eq. (13)as:

( 14) When the rate of change of ξ becomes much smaller than the rate of change of - фото 437

When the rate of change of ξ becomes much smaller than the rate of change of temperature, (d ξ /d t ) P≪ (d T /d t ) P, the configurational contribution is negligible.

Hence, it is the ratio between these two rates that is controlling the relative value of the experimentally recorded configurational heat capacity. This ratio is maximum in the supercooled liquid state, and decreases throughout the glass transition range to become negligible in the glassy state (cf. Figure 3). There, only the first right‐hand side term in Eq. (14)contributes:

(15) The next step thus consists in taking into account the time dependence of ξ at - фото 438

The next step thus consists in taking into account the time dependence of ξ at every temperature through the temperature dependence of the relaxation time τ . The simplest way to do this is to assume a simple exponential decay for ξ at fixed temperature and pressure:

( 16) Encyclopedia of Glass Science Technology History and Culture - изображение 439

where ξ eq( P , T ) is the equilibrium value of the order parameter, i.e. a variable characterizing the liquid structure that depends only on P and T . Although the relaxation time itself has been given different temperature dependences with Arrhenius, VFT, or others laws ( Chapter 3.7), the important point is that they are all of an exponential nature with respect to T or P to ensure the structural freezing‐in of the system.

Interesting applications of these concepts have been made with the lattice‐hole model of liquids, which has the advantage of lending itself to an evaluation of the order parameter ξ . Schematically, this model considers a liquid as a lattice in which disorder is represented by unoccupied sites whose fraction x depends on both temperature and pressure [17]. From the equilibrium value of the order parameter, it is thus possible to solve the linear differential Eq. (16)to find its temperature dependence and, then, to calculate the variations of the heat capacity within the glass transition range under varied conditions [18]. Likewise, the configurational Gibbs free energy may also be computed analytically as a function of temperature, pressure, and order parameter. A similar approach has been followed to incorporate the effects of pressure in the expression of the structural relaxation time for determining also how the heat capacity, thermal expansion coefficient, and isothermal compressibility vary under different conditions [19].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Encyclopedia of Glass Science, Technology, History, and Culture»

Представляем Вашему вниманию похожие книги на «Encyclopedia of Glass Science, Technology, History, and Culture» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Encyclopedia of Glass Science, Technology, History, and Culture»

Обсуждение, отзывы о книге «Encyclopedia of Glass Science, Technology, History, and Culture» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x