Naoki Sugimoto - Chemistry and Biology of Non-canonical Nucleic Acids

Здесь есть возможность читать онлайн «Naoki Sugimoto - Chemistry and Biology of Non-canonical Nucleic Acids» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Chemistry and Biology of Non-canonical Nucleic Acids: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Chemistry and Biology of Non-canonical Nucleic Acids»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover the fundamentals and intricacies of a subject at the interface of chemistry and biology with this authoritative resource<br> <br> Chemistry and Biology of Non-canonical Nucleic Acids delivers a comprehensive treatment of the chemistry and biology of non-canonical nucleic acids, including their history, structures, stabilities, properties, and functions. You'll learn about the role of these vital compounds in transcription, translation, regulation, telomeres, helicases, cancers, neurodegenerative diseases, therapeutic applications, nanotechnology, and more.<br> <br> An ideal resource for graduate students, researchers in physical, organic, analytical, and inorganic chemistry will learn about uncommon nucleic acids, become the common non-canonical nucleic acids that fascinate and engage academics and professionals in private industry.<br> <br> Split into 15 chapters covering a wide range of aspects of non-canonical nucleic acids, the book explains why these compounds exist at the forefront of a new research revolution at the intersection of chemistry and biology. Chemistry and Biology of Non-canonical Nucleic Acids also covers a broad range of topics critical to understanding these versatile and omnipresent chemicals, including:<br> <br> * A discussion of the dynamic regulation of biosystems by nucleic acids with non-canonical structures<br> * The role played by nucleic acid structures in neurodegenerative diseases and various cancers<br> * An exploration of the future outlook for the chemistry and biology of non-canonical nucleic acids<br> * An introduction to the history of canonical and non-canonical structures of nucleic acids<br> * An analysis of the physicochemical properties of non-canonical nucleic acids<br> <br> Perfect for biochemists, materials scientists, and bioengineers, Chemistry and Biology of Non-canonical Nucleic Acids will also earn a place in the libraries of medicinal and pharmaceutical chemists who wish to improve their understanding of life processes and the role that non-canonical nucleic acids play in them.

Chemistry and Biology of Non-canonical Nucleic Acids — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Chemistry and Biology of Non-canonical Nucleic Acids», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

2.2.2 Purine–Pyrimidine Mismatches

Mismatched base pairs between purine and pyrimidine nucleobases are known as transition mismatches. G·T and G·U mismatches can form two hydrogen bonds, which are usually known as typical “wobble” base pairs, by shifting the nucleobase geometry from that of Watson–Crick base pairs ( Figure 2.2). These mismatches are one of the most stable mismatches in DNA and RNA duplexes ( Tables 2.1and 2.2). G·U base pair is frequently observed in natural RNAs. It is because that both guanine and uracil take anti conformation in their glycosidic bond angles that are the same with Watson–Crick base pairs and the distance and geometric arrangement of C1′ atoms of the sugars do not largely change compared with the canonical duplex. Thus, there is no significant worsening of base stacking and littler perturbation of the duplex conformation. Adenine and cytosine also form two hydrogen bonds as similar way as the G·T(U) mismatch when the adenine nucleobase is protonated ( Figure 2.2). Formation of the A +·C mismatched base pair is demonstrated by X-ray diffraction analysis using dodecamer oligonucleotide strand [7]. However, neutral A·C mismatches are in equilibrium between the wobble and reverse wobble forms, each of which only forms one hydrogen bond. Thus, A·C mismatch is much less stable than G·T(U) mismatch in a physiological condition ( Tables 2.1and 2.2).

Figure 22 Wobble base pairs in duplexes Chemical structures of GT a GU - фото 12

Figure 2.2 Wobble base pairs in duplexes. Chemical structures of G-T (a), G-U (b), and A +-C (c) wobble base pairs. N1 atom of adenine nucleobase is protonated. (d) Structure of B-form DNA duplex containing G-T wobble base pairs (PDB ID: 113D). (e) Structure of A-form RNA duplex containing two consecutive G-U wobble base pairs (PDB ID: 433D). (f) Structure of B-form DNA duplex containing A +-C wobble base pairs (PDB ID: 1D99). Nucleobases forming the wobble base pairs are emphasized dark. Hydrogen bonds in the wobble base pairs are shown in dashed lines.

2.2.3 Purine–Purine Mismatches

Purine–purine and pyrimidine–pyrimidine mismatches are known as transversion mismatches. There are G·A, G·G, and A·A mismatches in the purine–purine mismatch. Among them, G·A mismatch forms relatively stable unusual base pairs in both DNA and RNA duplexes ( Tables 2.1and 2.2). It is highly polymorphic depending on sequence compositions. In DNA duplexes containing G·A mismatches that form two hydrogen bonds, various combinations of anti and syn were observed in their glycosidic bond angles ( Figure 2.3). G·G mismatch potentially adopts a base paring with two hydrogen bonds, in which two guanosines are symmetrically or asymmetrically oriented with anti and syn conformation in their glycosidic bond angles ( Figure 2.3). When the asymmetric G·G base pairs face each other in rotation, four guanines form a symmetric quartet as described later ( Chapter 3). Recent X-ray diffraction analyses also demonstrated polymorphic feature of the G·G mismatch by showing that with syn–syn combination in the glycosidic bond angles in the presence of chromomycin A3, which binds minor groove of the mismatched place and supports the structure analysis [8]. Detailed structure of A·A mismatch is rarely determined by X-ray diffraction analysis. It is considered that the mismatch is dynamically fluctuated and not able to be a particular structural state.

Table 2.1 Thermodynamic parameters for duplex formations in 1M NaCl by DNA oligonucleotides containing mismatches a) .

−Δ H ° −Δ S ° −Δ картинка 13 T m
Sequence XY (kcal mol −1) (cal mol −1) K −1) (kcal mol −1) (°C at 10 −4M)
5′CAAA X AAAG CG 64.5 183 7.7 42.9
3′GTTT Y TTTC GC 62.8 179 7.3 40.8
AT 68.0 196 7.2 40.1
TA 58.6 168 6.5 36.8
GG 53.5 158 4.5 25.6
TG 55.6 165 4.4 25.7
GA 52.6 156 4.2 23.9
GT 46.7 137 4.2 22.3
AG 39.9 116 3.9 18.0
AA 36.9 107 3.7 15.0
CT 53.2 161 3.3 19.1
TC 50.0 151 3.2 17.5
CA (40.3) b) (120) b) (3.1) b) (13) b)
TT (54.6) b) (167) b) (2.8) b) (17) b)
AC (35.8) b) (106) b) (2.9) b) (9) b)
CC (55.3) b) (171) b) (2.3) b) (15) b)
5′CAACTTGATATTAATA + Mismatch
3′GTTGAACTATAATTAT 102.1 289 12.4 55.8
3′GTTGAGCTATAATTAT TG 92.6 266 10.1 49.4
3′GTTGAACTATAGTTAT TG 95.5 274 10.5 50.5
3′GTTGAACTCTAATTAT TC 98.4 286 9.7 47.3
3′GTTGAATTATAATTAT GT 91.3 264 9.4 47.1
3′GTTGAACCATAATTAT AC 90.9 265 8.7 44.6
3′GTTGAACAATAATTAT AA 92.0 267 9.26 46.2

a)Values are summarized ones in a reference [6].

b)Values in parenthesis are significantly less accurate estimated using flat lower baselines in their melting analyses.

Table 2.2 Free energy increments for tandem mismatches in RNA oligonucleotides in 1M NaCl a) , b) .

Mismatch YZ ZY
5′ CGX YZX′ CG 3′ UG GU GA AG UU GG CA CU UC CC AC AA
3′ GCX′ ZYX GC 5′ GU UG AG GA UU GG AC UC CU CC CA AA
Closing base pair
X/X′ G/C −4.9 −4.1 −2.6 −1.3 −0.5 1.0 1.1 0.9 1.5
C/G −4.2 −1.1 −0.7 −0.7 −0.4 0.8 1.1 1.4 1.4 1.7 2.0 1.3
U/A −2.6 −0.3 0.7 1.1 [1.9] C 2.2 2.8 2.8
A/U −1.9 0.2 0.3 0.6 2.3 2.5 2.8

a)Values are summarized ones in a reference [6].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Chemistry and Biology of Non-canonical Nucleic Acids»

Представляем Вашему вниманию похожие книги на «Chemistry and Biology of Non-canonical Nucleic Acids» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Chemistry and Biology of Non-canonical Nucleic Acids»

Обсуждение, отзывы о книге «Chemistry and Biology of Non-canonical Nucleic Acids» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x