Spectroscopy for Materials Characterization

Здесь есть возможность читать онлайн «Spectroscopy for Materials Characterization» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Spectroscopy for Materials Characterization: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Spectroscopy for Materials Characterization»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

SPECTROSCOPY FOR MATERIALS CHARACTERIZATION
Learn foundational and advanced spectroscopy techniques from leading researchers in physics, chemistry, surface science, and nanoscience Spectroscopy for Materials Characterization,
Simonpietro Agnello
Spectroscopy for Materials Characterization

Spectroscopy for Materials Characterization — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Spectroscopy for Materials Characterization», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

where we have account for the properties of orthonormality and symmetry of the vibrational functions. The remaining integral can be expressed in terms of the average kinetic energy:

(2.24) where is the kinetic energy averaged over the n th state of the s th oscillator - фото 181

where картинка 182is the kinetic energy averaged over the n th state of the s th oscillator and M sis the nuclear mass defined in the normal mode s . According to the virial theorem:

(2.25) the overlap integral is 226 and its square is 227 - фото 183

the overlap integral is:

(2.26) and its square is 227 where the terms of the order of - фото 184

and its square is

(2.27) where the terms of the order of are neglected To solve Eq 221 because of - фото 185

where the terms of the order of картинка 186are neglected.

To solve Eq. (2.21), because of the independence of normal modes, the states of the oscillator 1 are separated from the remaining set n and are averaged over them:

(2.28) The asterisks on the indices n and on the normalizing factor FT mean that the - фото 187

The asterisks on the indices n and on the normalizing factor F(T) mean that the oscillator 1 is excluded from the set. The first factor in Eq. (2.28)becomes:

(2.29) E 1 T is the average thermal energy of a linear harmonic oscillator 230 - фото 188

E 1( T ) is the average thermal energy of a linear harmonic oscillator:

(2.30) where is the average quantum number of the oscillator 1 The same algorithm is - фото 189

where картинка 190is the average quantum number of the oscillator 1. The same algorithm is applied on the states of other oscillator numbers and after a bit of algebra, the integrated intensity of ZPL is found to be:

(2.31) where T sis the effective temperature of a harmonic oscillator 232 It is - фото 191

where T sis the effective temperature of a harmonic oscillator:

(2.32) It is useful to introduce the dimensionless parameter called Huang Rhys factor - фото 192

It is useful to introduce the dimensionless parameter, called Huang Rhys factor [12], for the band vibrations:

(2.33) The physical meaning of the Huang Rhys factor has been introduced in the - фото 193

The physical meaning of the Huang Rhys factor has been introduced in the previous chapter. According to Eq. (2.33), картинка 194equals the difference between the absorption energy E A(vertical distance from the minimum of W I, s( q s) to W II, s( q s)) and the luminescence energy E L(vertical distance from the minimum of W II, s( q s) to W I, s( q s)). The difference between E Aand E Lis the so‐called Stokes shift , is therefore 234 it gives the amount of the vibrational relaxation energy - фото 195is therefore:

(2.34) it gives the amount of the vibrational relaxation energy in units of the - фото 196

it gives the amount of the vibrational relaxation energy in units of the vibrational quantum.

After introducing the expression for I ZPL T can be rewritten as 235 At low - фото 197, the expression for I ZPL( T ) can be rewritten as:

(2.35) At low temperature namely kT ℏ ω s cothℏ ω s2 kT 1 or T s ℏ ω s2 - фото 198

At low temperature, namely kT ≪ ℏ ω s, coth(ℏ ω s/2 kT ) → 1 or T s→ (ℏ ω s)/2 k and I ZPL( T ) becomes:

(2.36) that increases with decreasing the total Huang Rhys factor At high - фото 199

that increases with decreasing the total Huang Rhys factor , картинка 200. At high temperature, namely kT ≫ ℏ ω s, coth(ℏ ω s/2 kT ) → 2 kT /ℏ ω sor kT s→ kT and the expression for I ZPL( T ) becomes:

(2.37) In this case I ZPL T decreases exponentially with increasing temperature - фото 201

In this case, I ZPL( T ) decreases exponentially with increasing temperature and drops faster the larger is the Huang Rhys factor .

2.1.4 Phonon Line Structure

In the following, we deal with the phonon coupled transitions to succeed in describing the shape of the whole band and its temperature dependence; the effects of band vibrations and localized vibrations will be separately discussed.

As introduced in Section 2.1.1, band vibrations correspond to the transitions in which phonons of the matrix are created or annihilated. They appear as broad continuous bands whose shape, L vib( ω , T ), depends on the spectral density of phonons and on the perturbation nearby the defect. As a consequence, L vib( ω , T ) cannot be derived exactly and we will limit ourselves to indicate it by its formal expression. In fact, the integrated intensity of the whole vibronic band is given by:

(2.38) The sum over n is an average over the vibrational levels in the ground - фото 202

The sum over n is an average over the vibrational levels in the ground electronic state, each level having a weight v n. The sum over m corresponds to all the possible transitions from the ground to the excited state including the ZPL ( n = m ). Under the Condon approximation, the previous equation can be written as:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Spectroscopy for Materials Characterization»

Представляем Вашему вниманию похожие книги на «Spectroscopy for Materials Characterization» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Spectroscopy for Materials Characterization»

Обсуждение, отзывы о книге «Spectroscopy for Materials Characterization» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x