Generalized Ordinary Differential Equations in Abstract Spaces and Applications

Здесь есть возможность читать онлайн «Generalized Ordinary Differential Equations in Abstract Spaces and Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Generalized Ordinary Differential Equations in Abstract Spaces and Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Generalized Ordinary Differential Equations in Abstract Spaces and Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS IN ABSTRACT SPACES AND APPLICATIONS
Explore a unified view of differential equations through the use of the generalized ODE from leading academics in mathematics Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Generalized Ordinary Differential Equations in Abstract Spaces and App­lications

Generalized Ordinary Differential Equations in Abstract Spaces and Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Generalized Ordinary Differential Equations in Abstract Spaces and Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

5Departamento de Matemática, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil

This preliminary chapter is devoted to two pillars of the theory of generalized ordinary differential equations for which we use the short form “generalized ODEs” . One of these pillars concerns the spaces in which the solutions of a generalized ODE are generally placed. The other pillar concerns the theory of nonabsolute integration, due to Jaroslav Kurzweil and Ralph Henstock, for integrands taking values in Banach spaces. As a matter of fact, such integration theory permeates the entire book. It (the theory of non absolute integration) is within the heartwood of the theory of generalized ODEs, appearing (the same theory of nonabsolute integration) in the integral form of a very special case of nonautonomous generalized ODEs, namely (now we mention the name of the special case of generalized ODEs), measure functional differential equations.

The solutions of a Cauchy problem for a generalized ODE, with right‐hand side in a class of functions introduced by J. Kurzweil in [147–149], usually belong to a certain space of functions of bounded variation (see Lemma 4.9). However, since functions of bounded variation are also regulated functions in the sense described by Jean Dieudonné and, more generally, by the group Nicolas Bourbaki, and because the space of regulated functions is more adequate for dealing with discontinuous functions appearing naturally in Stieltjes‐type integrals, it is important to present a substantial content about this space. Thus, the first section of this chapter describes the main properties of the space of regulated functions with the icing of the cake being a characterization of its relatively compact subsets due to D. Franková.

Regarding functions of bounded variation, which are known to be of bounded semivariation and, hence, of bounded картинка 29‐variation, we present, in the second section of this chapter, a coherent overview of functions of bounded картинка 30‐variation over bilinear triples. Among the results involving functions of bounded variation, the theorem of Helly (or the Helly's choice principle for Banach space‐valued function) due to C. S. Hönig is a spotlight. On the other hand, functions of bounded semivariation appear, for instance, in the integration by parts formula for Kurzweil and Henstock integrals of Stieltjes‐type.

In the third section of this chapter, we describe the second pillar and main background of the theory of generalized ODEs, namely, the framework of vector‐valued nonabsolute integrals of Kurzweil and Henstock. Here, we call the reader's attention to the fact that we refer to Kurzweil vector integrals as Perron–Stieltjes integrals so that, when a more general definition of the Kurzweil integral is presented in Chapter 1, the reader will not be confused. One of the highlights of the third section is, then, the integration by parts formula for Perron–Stieltjes integrals.

An extra section called “Appendix,” which can be skipped in a first reading of the book, concerns other types of gauge‐based integrals which use the interesting idea of Edward James McShane. The well‐known Bochner–Lebesgue integral comes into the scene and an equivalent definition of it as the limit of Riemannian‐type sums comes up.

1.1 Regulated Functions

Regulated functions appear in the works by J. Dieudonné [58, p. 139] and N. Bourbaki [32, p. II.4]. The raison d'être of regulated functions lies on the fact that every regulated function Generalized Ordinary Differential Equations in Abstract Spaces and Applications - изображение 31has a primitive, that is, there exists a continuous function Generalized Ordinary Differential Equations in Abstract Spaces and Applications - изображение 32such that Generalized Ordinary Differential Equations in Abstract Spaces and Applications - изображение 33almost everywhere in картинка 34, in the sense of the Lebesgue measure. The interested reader may want to check this fact as described, for instance, by the group N. Bourbaki in [32, Corollaire I, p. II.6].

1.1.1 Basic Properties

Let Generalized Ordinary Differential Equations in Abstract Spaces and Applications - изображение 35be a Banach space with norm Generalized Ordinary Differential Equations in Abstract Spaces and Applications - изображение 36. Here, we describe regulated functions Generalized Ordinary Differential Equations in Abstract Spaces and Applications - изображение 37, where картинка 38, with картинка 39, is a compact interval of the real line Generalized Ordinary Differential Equations in Abstract Spaces and Applications - изображение 40.

Definition 1.1:A function Generalized Ordinary Differential Equations in Abstract Spaces and Applications - изображение 41is called regulated , if the lateral limits

Generalized Ordinary Differential Equations in Abstract Spaces and Applications - изображение 42

exist. The space of all regulated functions Generalized Ordinary Differential Equations in Abstract Spaces and Applications - изображение 43will be denoted by Generalized Ordinary Differential Equations in Abstract Spaces and Applications - изображение 44.

We denote the subspace of all continuous functions Generalized Ordinary Differential Equations in Abstract Spaces and Applications - изображение 45by Generalized Ordinary Differential Equations in Abstract Spaces and Applications - изображение 46and, by Generalized Ordinary Differential Equations in Abstract Spaces and Applications - изображение 47, we mean the subspace of regulated functions Generalized Ordinary Differential Equations in Abstract Spaces and Applications - изображение 48which are left‐continuous on Then the following inclusions clearly hold Remark 12Let - фото 49. Then, the following inclusions clearly hold

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Generalized Ordinary Differential Equations in Abstract Spaces and Applications»

Представляем Вашему вниманию похожие книги на «Generalized Ordinary Differential Equations in Abstract Spaces and Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Generalized Ordinary Differential Equations in Abstract Spaces and Applications»

Обсуждение, отзывы о книге «Generalized Ordinary Differential Equations in Abstract Spaces and Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x