Iain Pardoe - Applied Regression Modeling

Здесь есть возможность читать онлайн «Iain Pardoe - Applied Regression Modeling» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Applied Regression Modeling: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Applied Regression Modeling»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Master the fundamentals of regression without learning calculus with this one-stop resource The newly and thoroughly revised 3rd Edition of
delivers a concise but comprehensive treatment of the application of statistical regression analysis for those with little or no background in calculus. Accomplished instructor and author Dr. Iain Pardoe has reworked many of the more challenging topics, included learning outcomes and additional end-of-chapter exercises, and added coverage of several brand-new topics including multiple linear regression using matrices.
The methods described in the text are clearly illustrated with multi-format datasets available on the book's supplementary website. In addition to a fulsome explanation of foundational regression techniques, the book introduces modeling extensions that illustrate advanced regression strategies, including model building, logistic regression, Poisson regression, discrete choice models, multilevel models, Bayesian modeling, and time series forecasting. Illustrations, graphs, and computer software output appear throughout the book to assist readers in understanding and retaining the more complex content.
covers a wide variety of topics, like:
Simple linear regression models, including the least squares criterion, how to evaluate model fit, and estimation/prediction Multiple linear regression, including testing regression parameters, checking model assumptions graphically, and testing model assumptions numerically Regression model building, including predictor and response variable transformations, qualitative predictors, and regression pitfalls Three fully described case studies, including one each on home prices, vehicle fuel efficiency, and pharmaceutical patches Perfect for students of any undergraduate statistics course in which regression analysis is a main focus,
also belongs on the bookshelves of non-statistics graduate students, including MBAs, and for students of vocational, professional, and applied courses like data science and machine learning.

Applied Regression Modeling — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Applied Regression Modeling», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Thus the 90th percentile of the population distribution of is to the nea - фото 197

Thus, the 90th percentile of the population distribution of картинка 198is картинка 199(to the nearest картинка 200). This is much larger than the value we got above for the 90th percentile of the sampling distribution of картинка 201( картинка 202). This is because the sampling distribution of картинка 203is less spread out than the population distribution of the standard deviations for our example are 9129 for the former and 50 for - фото 204—the standard deviations for our example are 9.129 for the former and 50 for the latter. Figure 1.5illustrates this point.

Figure 15The central limit theorem in action The upper density curve a - фото 205

Figure 1.5The central limit theorem in action. The upper density curve (a) shows a normal population distribution for картинка 206with mean картинка 207and standard deviation картинка 208: the shaded area is картинка 209, which lies to the right of the картинка 210th percentile, картинка 211. The lower density curve (b) shows a normal sampling distribution for картинка 212with mean картинка 213and standard deviation картинка 214: the shaded area is also картинка 215, which lies to the right of the картинка 216th percentile, картинка 217. It is not necessary for the population distribution of картинка 218to be normal for the central limit theorem to work—we have used a normal population distribution here just for the sake of illustration.

We can again turn these calculations around. For example, what is the probability that is greater than 291703 To answer this consider the following calculation - фото 219is greater than 291.703? To answer this, consider the following calculation:

So the probability that is greater than 291703 is 010 142 Central - фото 220

So, the probability that картинка 221is greater than 291.703 is 0.10.

1.4.2 Central limit theorem—t‐version

One major drawback to the normal version of the central limit theorem is that to use it we have to assume that we know the value of the population standard deviation, картинка 222. A generalization of the standard normal distribution called Student's t‐distribution solves this problem. The density curve for a t‐distribution looks very similar to a normal density curve, but the tails tend to be a little “thicker,” that is, t‐distributions are a little more spread out than the normal distribution. This “extra variability” is controlled by an integer number called the degrees of freedom . The smaller this number, the more spread out the t‐distribution density curve (conversely, the higher the degrees of freedom, the more like a normal density curve it looks).

For example, the following table shows critical values (i.e., horizontal axis values or percentiles) and tail areas for a t‐distribution with 29 degrees of freedom: Probabilities (tail areas) and percentiles (critical values) for a t‐distribution with картинка 223degrees of freedom.

Upper‐tail area 0.1 0.05 0.025 0.01 0.005 0.001
Critical value of картинка 224 1.311 1.699 2.045 2.462 2.756 3.396
Two‐tail area 0.2 0.1 0.05 0.02 0.01 0.002

Compared with the corresponding table for the normal distribution in Section 1.2, the critical values are slightly larger in this table.

We will use the t‐distribution from this point on because it will allow us to use an estimate of the population standard deviation (rather than having to assume this value). A reasonable estimate to use is the sample standard deviation, картинка 225. Since we will be using an estimate of the population standard deviation, we will be a little less certain about our probability calculations—this is why the t‐distribution needs to be a little more spread out than the normal distribution, to adjust for this extra uncertainty. This extra uncertainty will be of particular concern when we are not too sure if our sample standard deviation is a good estimate of the population standard deviation (i.e., in small samples). So, it makes sense that the degrees of freedom increases as the sample size increases. In this particular application, we will use the t‐distribution with картинка 226degrees of freedom in place of a standard normal distribution in the following t‐version of the central limit theorem.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Applied Regression Modeling»

Представляем Вашему вниманию похожие книги на «Applied Regression Modeling» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Applied Regression Modeling»

Обсуждение, отзывы о книге «Applied Regression Modeling» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x