Iain Pardoe - Applied Regression Modeling

Здесь есть возможность читать онлайн «Iain Pardoe - Applied Regression Modeling» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Applied Regression Modeling: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Applied Regression Modeling»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Master the fundamentals of regression without learning calculus with this one-stop resource The newly and thoroughly revised 3rd Edition of
delivers a concise but comprehensive treatment of the application of statistical regression analysis for those with little or no background in calculus. Accomplished instructor and author Dr. Iain Pardoe has reworked many of the more challenging topics, included learning outcomes and additional end-of-chapter exercises, and added coverage of several brand-new topics including multiple linear regression using matrices.
The methods described in the text are clearly illustrated with multi-format datasets available on the book's supplementary website. In addition to a fulsome explanation of foundational regression techniques, the book introduces modeling extensions that illustrate advanced regression strategies, including model building, logistic regression, Poisson regression, discrete choice models, multilevel models, Bayesian modeling, and time series forecasting. Illustrations, graphs, and computer software output appear throughout the book to assist readers in understanding and retaining the more complex content.
covers a wide variety of topics, like:
Simple linear regression models, including the least squares criterion, how to evaluate model fit, and estimation/prediction Multiple linear regression, including testing regression parameters, checking model assumptions graphically, and testing model assumptions numerically Regression model building, including predictor and response variable transformations, qualitative predictors, and regression pitfalls Three fully described case studies, including one each on home prices, vehicle fuel efficiency, and pharmaceutical patches Perfect for students of any undergraduate statistics course in which regression analysis is a main focus,
also belongs on the bookshelves of non-statistics graduate students, including MBAs, and for students of vocational, professional, and applied courses like data science and machine learning.

Applied Regression Modeling — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Applied Regression Modeling», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Suppose that a random sample of Applied Regression Modeling - изображение 227data values, represented by Applied Regression Modeling - изображение 228, comes from a population that has a mean of картинка 229. Imagine taking a large number of random samples of картинка 230data values and calculating the mean and standard deviation for each sample. As before, we will let картинка 231represent the imagined list of repeated sample means, and similarly, we will let represent the imagined list of repeated sample standard deviations Define - фото 232represent the imagined list of repeated sample standard deviations. Define

Under very general conditions t has an approximate tdistribution with degrees - фото 233

Under very general conditions, t has an approximate t‐distribution with картинка 234degrees of freedom. The two differences from the normal version of the central limit theorem that we used before are that the repeated sample standard deviations, картинка 235, replace an assumed population standard deviation, картинка 236, and that the resulting sampling distribution is a t‐distribution (not a normal distribution).

To illustrate, let us repeat the calculations from Section 1.4.1based on an assumed population mean, Applied Regression Modeling - изображение 237, but rather than using an assumed population standard deviation, Applied Regression Modeling - изображение 238, we will instead use our observed sample standard deviation, 53.8656 for картинка 239. To find the 90th percentile of the sampling distribution of the mean sale price, Thus the 90th percentile of the sampling distribution of is - фото 240:

Thus the 90th percentile of the sampling distribution of is to the neare - фото 241

Thus, the 90th percentile of the sampling distribution of картинка 242is картинка 243(to the nearest картинка 244).

Turning this around, what is the probability that is greater than 292893 So the probability that is greater than 292 - фото 245is greater than 292.893?

So the probability that is greater than 292893 is 010 So far we have - фото 246

So, the probability that картинка 247is greater than 292.893 is 0.10.

So far, we have focused on the sampling distribution of sample means, картинка 248, but what we would really like to do is infer what the observed sample mean, картинка 249, tells us about the population mean, картинка 250. Thus, while the preceding calculations have been useful for building up intuition about sampling distributions and manipulating probability statements, their main purpose has been to prepare the ground for the next two sections, which cover how to make statistical inferences about the population mean, картинка 251.

1.5 Interval Estimation

We have already seen that the sample mean, картинка 252, is a good point estimate of the population mean, картинка 253(in the sense that it is unbiased—see Section 1.4). It is also helpful to know how reliable this estimate is, that is, how much sampling uncertainty is associated with it. A useful way to express this uncertainty is to calculate an interval estimate or confidence interval for the population mean, картинка 254. The interval should be centered at the point estimate (in this case, картинка 255), and since we are probably equally uncertain that the population mean could be lower or higher than this estimate, it should have the same amount of uncertainty either side of the point estimate. We quantify this uncertainty with a number called the “margin of error.” Thus, the confidence interval is of the form “point estimate картинка 256margin of error” or “(point estimate картинка 257margin of error, point estimate margin of error We can obtain the exact form of the confidence interval from - фото 258margin of error).”

We can obtain the exact form of the confidence interval from the t‐version of the central limit theorem, where has an approximate tdistribution with degrees of freedom In particular - фото 259has an approximate t‐distribution with картинка 260degrees of freedom. In particular, suppose that we want to calculate a 95% confidence interval for the population mean, картинка 261, for the home prices example—in other words, an interval such that there will be an area of 0.95 between the two endpoints of the interval (and an area of 0.025 to the left of the interval in the lower tail, and an area of 0.025 to the right of the interval in the upper tail). Let us consider just one side of the interval first. Since 2.045 is the 97.5th percentile of the t‐distribution with 29 degrees of freedom (see the t‐table in Section 1.4.2), then

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Applied Regression Modeling»

Представляем Вашему вниманию похожие книги на «Applied Regression Modeling» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Applied Regression Modeling»

Обсуждение, отзывы о книге «Applied Regression Modeling» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x