Iain Pardoe - Applied Regression Modeling
Здесь есть возможность читать онлайн «Iain Pardoe - Applied Regression Modeling» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Applied Regression Modeling
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:5 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Applied Regression Modeling: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Applied Regression Modeling»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
delivers a concise but comprehensive treatment of the application of statistical regression analysis for those with little or no background in calculus. Accomplished instructor and author Dr. Iain Pardoe has reworked many of the more challenging topics, included learning outcomes and additional end-of-chapter exercises, and added coverage of several brand-new topics including multiple linear regression using matrices.
The methods described in the text are clearly illustrated with multi-format datasets available on the book's supplementary website. In addition to a fulsome explanation of foundational regression techniques, the book introduces modeling extensions that illustrate advanced regression strategies, including model building, logistic regression, Poisson regression, discrete choice models, multilevel models, Bayesian modeling, and time series forecasting. Illustrations, graphs, and computer software output appear throughout the book to assist readers in understanding and retaining the more complex content.
covers a wide variety of topics, like:
Simple linear regression models, including the least squares criterion, how to evaluate model fit, and estimation/prediction Multiple linear regression, including testing regression parameters, checking model assumptions graphically, and testing model assumptions numerically Regression model building, including predictor and response variable transformations, qualitative predictors, and regression pitfalls Three fully described case studies, including one each on home prices, vehicle fuel efficiency, and pharmaceutical patches Perfect for students of any undergraduate statistics course in which regression analysis is a main focus,
also belongs on the bookshelves of non-statistics graduate students, including MBAs, and for students of vocational, professional, and applied courses like data science and machine learning.
data values, represented by
, comes from a population that has a mean of
. Imagine taking a large number of random samples of
data values and calculating the mean and standard deviation for each sample. As before, we will let
represent the imagined list of repeated sample means, and similarly, we will let
represent the imagined list of repeated sample standard deviations. Define
degrees of freedom. The two differences from the normal version of the central limit theorem that we used before are that the repeated sample standard deviations,
, replace an assumed population standard deviation,
, and that the resulting sampling distribution is a t‐distribution (not a normal distribution).
, but rather than using an assumed population standard deviation,
, we will instead use our observed sample standard deviation, 53.8656 for
. To find the 90th percentile of the sampling distribution of the mean sale price,
:
is
(to the nearest
).
is greater than 292.893?
is greater than 292.893 is 0.10.
, but what we would really like to do is infer what the observed sample mean,
, tells us about the population mean,
. Thus, while the preceding calculations have been useful for building up intuition about sampling distributions and manipulating probability statements, their main purpose has been to prepare the ground for the next two sections, which cover how to make statistical inferences about the population mean,
.
, is a good point estimate of the population mean,
(in the sense that it is unbiased—see Section 1.4). It is also helpful to know how reliable this estimate is, that is, how much sampling uncertainty is associated with it. A useful way to express this uncertainty is to calculate an interval estimate or confidence interval for the population mean,
. The interval should be centered at the point estimate (in this case,
), and since we are probably equally uncertain that the population mean could be lower or higher than this estimate, it should have the same amount of uncertainty either side of the point estimate. We quantify this uncertainty with a number called the “margin of error.” Thus, the confidence interval is of the form “point estimate
margin of error” or “(point estimate
margin of error, point estimate
margin of error).”
has an approximate t‐distribution with
degrees of freedom. In particular, suppose that we want to calculate a 95% confidence interval for the population mean,
, for the home prices example—in other words, an interval such that there will be an area of 0.95 between the two endpoints of the interval (and an area of 0.025 to the left of the interval in the lower tail, and an area of 0.025 to the right of the interval in the upper tail). Let us consider just one side of the interval first. Since 2.045 is the 97.5th percentile of the t‐distribution with 29 degrees of freedom (see the t‐table in Section 1.4.2), then