Iain Pardoe - Applied Regression Modeling

Здесь есть возможность читать онлайн «Iain Pardoe - Applied Regression Modeling» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Applied Regression Modeling: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Applied Regression Modeling»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Master the fundamentals of regression without learning calculus with this one-stop resource The newly and thoroughly revised 3rd Edition of
delivers a concise but comprehensive treatment of the application of statistical regression analysis for those with little or no background in calculus. Accomplished instructor and author Dr. Iain Pardoe has reworked many of the more challenging topics, included learning outcomes and additional end-of-chapter exercises, and added coverage of several brand-new topics including multiple linear regression using matrices.
The methods described in the text are clearly illustrated with multi-format datasets available on the book's supplementary website. In addition to a fulsome explanation of foundational regression techniques, the book introduces modeling extensions that illustrate advanced regression strategies, including model building, logistic regression, Poisson regression, discrete choice models, multilevel models, Bayesian modeling, and time series forecasting. Illustrations, graphs, and computer software output appear throughout the book to assist readers in understanding and retaining the more complex content.
covers a wide variety of topics, like:
Simple linear regression models, including the least squares criterion, how to evaluate model fit, and estimation/prediction Multiple linear regression, including testing regression parameters, checking model assumptions graphically, and testing model assumptions numerically Regression model building, including predictor and response variable transformations, qualitative predictors, and regression pitfalls Three fully described case studies, including one each on home prices, vehicle fuel efficiency, and pharmaceutical patches Perfect for students of any undergraduate statistics course in which regression analysis is a main focus,
also belongs on the bookshelves of non-statistics graduate students, including MBAs, and for students of vocational, professional, and applied courses like data science and machine learning.

Applied Regression Modeling — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Applied Regression Modeling», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

For a lower or higher level of confidence than 95%, the percentile used in the calculation must be changed as appropriate. For example, for a 90% interval (i.e., with 5% in each tail), the 95th percentile would be needed, whereas for a 99% interval (i.e., with 0.5% in each tail), the 99.5th percentile would be needed. These percentiles can be obtained from the table “Univariate Data” in Notation and Formulas (which is an expanded version of the table in Section 1.4.2). Instructions for using the table can be found in Notation and Formulas.

Thus, in general, we can write a confidence interval for a univariate mean, as where is the sample mean - фото 302, as

where is the sample mean is the sample standard deviation - фото 303

where картинка 304is the sample mean, картинка 305is the sample standard deviation, картинка 306is the sample size, and the t‐percentile comes from a t‐distribution with degrees of freedom In this expression is the margin of error The example - фото 307degrees of freedom. In this expression, is the margin of error The example above becomes Computer help 23 in the - фото 308is the margin of error.

The example above becomes

Computer help 23 in the software information files available from the book - фото 309

Computer help #23 in the software information files available from the book website shows how to use statistical software to calculate confidence intervals for the population mean. As further practice, calculate a 90% confidence interval for the population mean for the home prices example (see Problem 1.10)—you should find that it is ( картинка 310, картинка 311).

Now that we have calculated a confidence interval, what exactly does it tell us? Well, for the home prices example, loosely speaking , we can say that “we are 95% confident that the mean single‐family home sale price in this housing market is between картинка 312and картинка 313.” This will get you by among friends (as long as none of your friends happen to be expert statisticians). But to provide a more precise interpretation we have to revisit the notion of hypothetical repeated samples. If we were to take a large number of random samples of size 30 from our population of sale prices and calculate a 95% confidence interval for each, then 95% of those confidence intervals would contain the (unknown) population mean. We do not know (nor will we ever know) whether the 95% confidence interval for our particular sample contains the population mean—thus, strictly speaking, we cannot say “the probability that the population mean is in our interval is 0.95.” All we know is that the procedure that we have used to calculate the 95% confidence interval tends to produce intervals that under repeated sampling contain the population mean 95% of the time. Stick with the phrase “95% confident” and avoid using the word “probability” and chances are that no one (not even expert statisticians) will be too offended.

Interpretation of a confidence interval for a univariate mean:

Suppose we have calculated a 95% confidence interval for a univariate mean, картинка 314, to be ( картинка 315, картинка 316). Then we can say that we are 95% confident that картинка 317is between картинка 318and картинка 319.

Before moving on to Section 1.6, which describes another way to make statistical inferences about population means—hypothesis testing—let us consider whether we can now forget the normal distribution. The calculations in this section are based on the central limit theorem, which does not require the population to be normal. We have also seen that t‐distributions are more useful than normal distributions for calculating confidence intervals. For large samples, it does not make much difference (note how the percentiles for t‐distributions get closer to the percentiles for the standard normal distribution as the degrees of freedom get larger in Table C.1), but for smaller samples it can make a large difference. So for this type of calculation, we always use a t‐distribution from now on. However, we cannot completely forget about the normal distribution yet; it will come into play again in a different context in later chapters.

When using a t‐distribution, how do we know how many degrees of freedom to use? One way to think about degrees of freedom is in terms of the information provided by the data we are analyzing. Roughly speaking, each data observation provides one degree of freedom (this is where the картинка 320in the degrees of freedom formula comes in), but we lose a degree of freedom for each population parameter that we have to estimate. So, in this chapter, when we are estimating the population mean, the degrees of freedom formula is картинка 321. In Chapter 2, when we will be estimating two population parameters (the intercept and the slope of a regression line), the degrees of freedom formula will be Applied Regression Modeling - изображение 322. For the remainder of the book, the general formula for the degrees of freedom in a multiple linear regression model will be Applied Regression Modeling - изображение 323or картинка 324, where картинка 325is the number of predictor variables in the model. Note that this general formula actually also works for Chapter 2(where картинка 326) and even this chapter (where картинка 327, since a linear regression model with zero predictors is equivalent to estimating the population mean for a univariate dataset).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Applied Regression Modeling»

Представляем Вашему вниманию похожие книги на «Applied Regression Modeling» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Applied Regression Modeling»

Обсуждение, отзывы о книге «Applied Regression Modeling» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x