Iain Pardoe - Applied Regression Modeling

Здесь есть возможность читать онлайн «Iain Pardoe - Applied Regression Modeling» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Applied Regression Modeling: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Applied Regression Modeling»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Master the fundamentals of regression without learning calculus with this one-stop resource The newly and thoroughly revised 3rd Edition of
delivers a concise but comprehensive treatment of the application of statistical regression analysis for those with little or no background in calculus. Accomplished instructor and author Dr. Iain Pardoe has reworked many of the more challenging topics, included learning outcomes and additional end-of-chapter exercises, and added coverage of several brand-new topics including multiple linear regression using matrices.
The methods described in the text are clearly illustrated with multi-format datasets available on the book's supplementary website. In addition to a fulsome explanation of foundational regression techniques, the book introduces modeling extensions that illustrate advanced regression strategies, including model building, logistic regression, Poisson regression, discrete choice models, multilevel models, Bayesian modeling, and time series forecasting. Illustrations, graphs, and computer software output appear throughout the book to assist readers in understanding and retaining the more complex content.
covers a wide variety of topics, like:
Simple linear regression models, including the least squares criterion, how to evaluate model fit, and estimation/prediction Multiple linear regression, including testing regression parameters, checking model assumptions graphically, and testing model assumptions numerically Regression model building, including predictor and response variable transformations, qualitative predictors, and regression pitfalls Three fully described case studies, including one each on home prices, vehicle fuel efficiency, and pharmaceutical patches Perfect for students of any undergraduate statistics course in which regression analysis is a main focus,
also belongs on the bookshelves of non-statistics graduate students, including MBAs, and for students of vocational, professional, and applied courses like data science and machine learning.

Applied Regression Modeling — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Applied Regression Modeling», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1.4.1 Central limit theorem—normal version

Suppose that a random sample of Applied Regression Modeling - изображение 159data values, represented by Applied Regression Modeling - изображение 160, comes from a population that has a mean of картинка 161and a standard deviation of картинка 162. The sample mean, картинка 163, is a pretty good estimate of the population mean, картинка 164. This textbook uses картинка 165for the sample mean of картинка 166rather than the traditional картинка 167(“ картинка 168‐bar”), which, in the author's experience, is unfamiliar and awkward for many students. The very famous sampling distribution of this statistic derives from the central limit theorem . This theorem states that under very general conditions, the sample mean has an approximate normal distribution with mean Applied Regression Modeling - изображение 169and standard deviation Applied Regression Modeling - изображение 170(under repeated sampling). In other words, if we were to take a large number of random samples of картинка 171data values and calculate the mean for each sample, the distribution of these sample means would be a normal distribution with mean Applied Regression Modeling - изображение 172and standard deviation Applied Regression Modeling - изображение 173. Since the mean of this sampling distribution is картинка 174, картинка 175is an unbiased estimate of картинка 176.

An amazing fact about the central limit theorem is that there is no need for the population itself to be normal (remember that we had to assume this for the calculations in Section 1.3). However, the more symmetric the distribution of the population, the better is the normal approximation for the sampling distribution of the sample mean. Also, the approximation tends to be better the larger the sample size картинка 177.

So, how can we use this information? Well, the central limit theorem by itself will not help us to draw statistical inferences about the population without still having to make some restrictive assumptions. However, it is certainly a step in the right direction, so let us see what kind of calculations we can now make for the home prices example. As in Section 1.3, we will assume that Applied Regression Modeling - изображение 178and Applied Regression Modeling - изображение 179, but now we no longer need to assume that the population is normal. Imagine taking a large number of random samples of size 30 from this population and calculating the mean sale price for each sample. To get a better handle on the sampling distribution of these mean sale prices, we will find the 90th percentile of this sampling distribution. Let us do the calculation first, and then see why this might be a useful number to know.

First, we need to get some notation straight. In this section, we are not thinking about the specific sample mean we got for our actual sample of 30 sale prices, Applied Regression Modeling - изображение 180. Rather we are imagining a list of potential sample means from a population distribution with mean 280 and standard deviation 50—we will call a potential sample mean in this list картинка 181. From the central limit theorem, the sampling distribution of Applied Regression Modeling - изображение 182is normal with mean 280 and standard deviation Applied Regression Modeling - изображение 183. Then the standardized value from is standard normal with mean 0 and standard deviation - фото 184‐value from is standard normal with mean 0 and standard deviation 1 From the normal - фото 185,

is standard normal with mean 0 and standard deviation 1 From the normal table - фото 186

is standard normal with mean 0 and standard deviation 1. From the normal table in Section 1.2, the 90th percentile of a standard normal random variable is 1.282 (since the horizontal axis value of 1.282 corresponds to an upper‐tail area of 0.1). Then

Thus the 90th percentile of the sampling distribution of is to the neare - фото 187

Thus, the 90th percentile of the sampling distribution of картинка 188is картинка 189(to the nearest картинка 190). In other words, under repeated sampling, картинка 191has a distribution with an area of 0.90 to the left of картинка 192(and an area of 0.10 to the right of картинка 193). This illustrates a crucial distinction between the distribution of population картинка 194‐values and the sampling distribution of картинка 195—the latter is much less spread out. For example, suppose for the sake of argument that the population distribution of картинка 196is normal (although this is not actually required for the central limit theorem to work). Then we can do a similar calculation to the one above to find the 90th percentile of this distribution (normal with mean 280 and standard deviation 50). In particular,

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Applied Regression Modeling»

Представляем Вашему вниманию похожие книги на «Applied Regression Modeling» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Applied Regression Modeling»

Обсуждение, отзывы о книге «Applied Regression Modeling» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x