Iain Pardoe - Applied Regression Modeling
Здесь есть возможность читать онлайн «Iain Pardoe - Applied Regression Modeling» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Applied Regression Modeling
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:5 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Applied Regression Modeling: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Applied Regression Modeling»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
delivers a concise but comprehensive treatment of the application of statistical regression analysis for those with little or no background in calculus. Accomplished instructor and author Dr. Iain Pardoe has reworked many of the more challenging topics, included learning outcomes and additional end-of-chapter exercises, and added coverage of several brand-new topics including multiple linear regression using matrices.
The methods described in the text are clearly illustrated with multi-format datasets available on the book's supplementary website. In addition to a fulsome explanation of foundational regression techniques, the book introduces modeling extensions that illustrate advanced regression strategies, including model building, logistic regression, Poisson regression, discrete choice models, multilevel models, Bayesian modeling, and time series forecasting. Illustrations, graphs, and computer software output appear throughout the book to assist readers in understanding and retaining the more complex content.
covers a wide variety of topics, like:
Simple linear regression models, including the least squares criterion, how to evaluate model fit, and estimation/prediction Multiple linear regression, including testing regression parameters, checking model assumptions graphically, and testing model assumptions numerically Regression model building, including predictor and response variable transformations, qualitative predictors, and regression pitfalls Three fully described case studies, including one each on home prices, vehicle fuel efficiency, and pharmaceutical patches Perfect for students of any undergraduate statistics course in which regression analysis is a main focus,
also belongs on the bookshelves of non-statistics graduate students, including MBAs, and for students of vocational, professional, and applied courses like data science and machine learning.
data values, represented by
, comes from a population that has a mean of
and a standard deviation of
. The sample mean,
, is a pretty good estimate of the population mean,
. This textbook uses
for the sample mean of
rather than the traditional
(“
‐bar”), which, in the author's experience, is unfamiliar and awkward for many students. The very famous sampling distribution of this statistic derives from the central limit theorem . This theorem states that under very general conditions, the sample mean has an approximate normal distribution with mean
and standard deviation
(under repeated sampling). In other words, if we were to take a large number of random samples of
data values and calculate the mean for each sample, the distribution of these sample means would be a normal distribution with mean
and standard deviation
. Since the mean of this sampling distribution is
,
is an unbiased estimate of
.
.
and
, but now we no longer need to assume that the population is normal. Imagine taking a large number of random samples of size 30 from this population and calculating the mean sale price for each sample. To get a better handle on the sampling distribution of these mean sale prices, we will find the 90th percentile of this sampling distribution. Let us do the calculation first, and then see why this might be a useful number to know.
. Rather we are imagining a list of potential sample means from a population distribution with mean 280 and standard deviation 50—we will call a potential sample mean in this list
. From the central limit theorem, the sampling distribution of
is normal with mean 280 and standard deviation
. Then the standardized
‐value from
,
is
(to the nearest
). In other words, under repeated sampling,
has a distribution with an area of 0.90 to the left of
(and an area of 0.10 to the right of
). This illustrates a crucial distinction between the distribution of population
‐values and the sampling distribution of
—the latter is much less spread out. For example, suppose for the sake of argument that the population distribution of
is normal (although this is not actually required for the central limit theorem to work). Then we can do a similar calculation to the one above to find the 90th percentile of this distribution (normal with mean 280 and standard deviation 50). In particular,