Aiden A. Bruen - Cryptography, Information Theory, and Error-Correction
Здесь есть возможность читать онлайн «Aiden A. Bruen - Cryptography, Information Theory, and Error-Correction» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Cryptography, Information Theory, and Error-Correction
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:5 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Cryptography, Information Theory, and Error-Correction: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Cryptography, Information Theory, and Error-Correction»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
A rich examination of the technologies supporting secure digital information transfers from respected leaders in the field Cryptography, Information Theory, and Error-Correction: A Handbook for the 21ST Century
Cryptography, Information Theory, and Error-Correction
, namely that
is relatively prime to
, there exists a unique integer
(
for deciphering) which is greater than 1 but less than
and is such that the remainder of
when divided by
is 1. It is easy for Bob to calculate
, using a method related to the Euclidean Algorithm (see Chapter 19), since Bob knows
which are the factors of
. There may be other deciphering indices that are easier to work with (see Remark 3.1part 2and a more general method in item 3 of the formal algorithm overleaf).
and
in a public directory under his name. He keeps secret the primes
and
:
is Bob's private key and the pair
is Bob's public key.
to transmit to Bob. Alice converts
to a number between 1 and
represented in binary (which we also denote by
). If
is too large, Alice breaks
into blocks, each of which is less than
. Let us assume, for simplicity, that
is less than
. Then, Alice enciphers
by calculating the cipher text
. Note that Rem
means the remainder when
is divided by
, so in other words Alice multiplies
by itself
times and gets the remainder upon division by
. This can be done quickly using the “repeated squaring” method and the principle described earlier. Note that
can be any positive integer relatively prime to
and
. However, suppose
. Then it can be shown that
, and so we may as well assume that
.
, he in turn multiplies
by itself
times and gets the remainder upon division by
. As explained in our earlier example, the calculation can be simplified. This remainder is in fact equal to
, the original message.