Aiden A. Bruen - Cryptography, Information Theory, and Error-Correction
Здесь есть возможность читать онлайн «Aiden A. Bruen - Cryptography, Information Theory, and Error-Correction» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Cryptography, Information Theory, and Error-Correction
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:5 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Cryptography, Information Theory, and Error-Correction: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Cryptography, Information Theory, and Error-Correction»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
A rich examination of the technologies supporting secure digital information transfers from respected leaders in the field Cryptography, Information Theory, and Error-Correction: A Handbook for the 21ST Century
Cryptography, Information Theory, and Error-Correction
is divisible by
.
are not divisible by
,
and assume that
is divisible by
. Then
. Therefore,
upon multiplying both sides by
.
and
is
. Then he can find that the remainder of
when divided by
is 1, where
, and use this for a deciphering index instead.
from
is easier than the factoring problem . For some methods of obtaining
from
that work in special cases, we refer to the problems. The factoring problem is to obtain
given
. Once
are known, it is easy to find the message
from
by calculating
: this is what Bob does. Mathematically, nobody has been able to prove that the factoring problem cannot be solved in a reasonable amount of time. Similarly, it has not been shown that
cannot be obtained from
in a reasonable amount of time by some method or another. We point out also that given
we can find
, even when
is chosen so that
, where
divides
and
divides
. (See Buchmann [Buc04]). Thus, the problem of finding
is equivalent to the factoring problem.
. Let the message be some number
between 0 and
, i.e.
. Our enciphering algorithm now reads: “increase
by 7 and get the cipher text
by calculating the remainder upon division by
.” For example if
is 55 and
, then
. So Atransmits the cipher text 2. Now, Bmust undo (or decrypt or decipher) 2 to get the original message. Before, our decryption algorithm read “subtract 7 from
,” i.e. “add the inverse of 7 to
.” We do this now. First, we must get the additive inverse of 7 modulo
i.e., the inverse of 7 modulo 55 (see Chapter 19). In other words, we must find
such that
leaves a remainder 0 when divided by 55. In this case,
is 48. Then, to decipher
, we increase
by 48 and obtain the remainder upon division by 55. In this case, we obtain the number 50. This is the original message.