Pero la unión del espacio y el tiempo fue la simplificación más espectacular de la nueva teoría. En la física clásica, la coordenada de tiempo no era afectada por la transformación de un sistema inercial a otro. Sin embargo, en la transformación de Lorentz, el espacio y el tiempo son interdependientes. En la relatividad especial (y en la general) el espacio y el tiempo aparecen conjunta e indisolublemente tratados como espacio-tiempo. El primero que fue capaz de demostrar geométricamente esta unión fué Hermann Minkowski en 1908.
Minkowski se refiere al espacio-tiempo como «el mundo». Lo llama así para no utilizar en su geometría el nombre matemático más vago de variedad y diferenciar con claridad la geometría resultante de los elementos geométricos propios del espacio euclidiano. En el mundo de Minkowski no hay objetos, sólo acontecimientos. Un punto del mundo es un acontecimiento. Una partícula será una sucesión de acontecimientos o línea-mundo. Las leyes de la física expresan la relaciones entre partículas como relaciones geométricas entre líneas-mundo. El concepto de «acontecimiento» se incorporará a todas las construcciones fenomenalistas de la realidad, una señal inequívoca de la aceptación de las condiciones relativistas como las condiciones imprescindibles en cualquier intento de construir lógicamente el mundo que nos rodea desde la percepción.
El aspecto más sobresaliente del espacio Minkowski es que es un espacio cuatridimensional, al unir indisolublemente las tres coordenadas del espacio euclideano y la coordenada de tiempo. Esta cuatridimensionalidad dificulta su significación psicológica por nuestra incapacidad de representación mental, pero no su significación física. De hecho, el número de coordenadas no puede aumentarse arbitrariamente, pues son las coordenadas necesarias para representar el entramado relativista de las leyes de la física. La geometría del espacio Minkowski tiene como objetivo representar adecuadamente una determinada situación física puesta de relieve por la teoría de la relatividad
En el espacio-tiempo, existe una unidad que mantiene su invariancia entre los sistemas y que viene a sustituir al espacio y al tiempo absoluto de la mecánica clásica. Esta unidad es el intervalo espacio-temporal: las unidades de longitud y los intervalos de tiempo sufren deformación al pasar de S a S’ y viceversa, pero el intervalo espaciotemporal señalado en S valdrá para S’ y al contrario. Aunque la distancia que separa los dos puntos en que se producen dos acontecimientos y su diferencia temporal depende del sistema inercial del observador, no ocurre lo mismo con el intervalo espacio-temporal entre los dos acontecimientos. El mantenimiento de una estructura espacio-temporal de la realidad era la garantía de medidas objetivas en física. Así, el espacio-tiempo mantenía la homogeneidad característica de la geometría euclidiana aunque perdía la ortogonalidad. La perdida de la ortogonalidad infringiría los postulados III y IV de Euclides, que mantienen respectivamente la invariabilidad de la dimensión de un segmento cuando es trasladado en el espacio y la igualdad de los ángulos rectos adyacentes producidos por el corte de dos líneas rectas. La métrica del espacio Minkowski por tanto no es euclidiana y sus elementos geométricos básicos tampoco al infringir los axiomas euclídeos. 14
3. La relatividad general
El principio de relatividad restringida conseguía su aplicación a todas las leyes de la física con excepción de la teoría gravitacional de Newton. La necesidad de elaborar una teoría de gravitación ajustada al principio de relatividad restringida acabará produciendo una nueva generalización del principio que se extenderá a los sistemas no inerciales. Este principio de relatividad general conseguirá la invariancia de las leyes de la física para todos los observadores siendo el principio de relatividad restringida un caso particular de la relatividad general.
La extensión del principio de relatividad a estos campos comenzó con la definición en 1911 por Einstein del principio de equivalencia, punto de partida de la relatividad general. Si consideramos dos sistemas de referencia, uno inercial S con un campo gravitacional y otro S’ acelerado respecto de S pero en el que no hay campo gravitacional, nos encontraremos con que si la aceleración de S’ equivale a la gravitación de S, ambos sistemas resultan indistinguibles, es decir, todos los experimentos físicos que realicemos en ellos darán resultados idénticos. 15 La equivalencia entre un campo gravitatorio y un sistema acelerado permite introducir el último concepto superviviente de la mecánica clásica, la fuerza gravitatoria, dentro del entramado de la relatividad. La extensión de la relatividad a todos los sistemas o relatividad general, dejará a la relatividad especial reducida a un caso particular de la general, al caso en que no hay campo gravitatorio o es tan débil que no existe diferencia apreciable entre la teoría general y la especial.
Del principio de equivalencia se deducen las tres predicciones fundamentales de la relatividad general: corrimiento hacia el rojo del espectro, dilatación temporal y deformación del espacio-tiempo por la acción de un campo gravitacional. De estos tres efectos sólo nos ocupamos del último al ser el que más importancia tiene en la interpretación que de la relatividad hace el fenomenalismo, pues asegura la realidad de los espacios no euclidianos y la supeditación (o conversión) de la geometría en una rama de la física.
En síntesis, la teoría general mantiene que la presencia de grandes masas de materia produce deformaciones en la región espacio-temporal próxima. Se supone que la curvatura en un punto es cero, por lo que le podemos aplicar las transformaciones de Lorentz de la relatividad especial válidas para un sistema inercial con campo gravitatorio nulo. Sin embargo, para establecer el intervalo entre dos puntos espacio-temporales de la región, necesitamos determinar su curvatura, para lo que necesitamos la métrica riemanniana de la que la métrica de Minkowski es un caso especial.
La métrica de Riemann era la estructura matemática adecuada para reflejar matemáticamente las medidas físicas en el espacio-tiempo con cualquier índice de curvatura. La conversión de cualquier medida en la equivalente en otro punto del espacio garantizaba el mantenimiento de un principio de relatividad y de las constantes necesarias a las leyes físicas. Ninguna ley puede pretender ser objetiva si no es formulada en los parámetros de la métrica de Riemann. Su elemento esencial, una matriz de números conocida como tensor métrico que sintetiza las características de la geometría de cada tipo de espacio posible, es la condición a la que todas las leyes físicas deben ajustarse. Einstein pensó que en la relatividad general el campo gravitatorio debía ser expresado como un tensor métrico que precisase la deformación del espacio-tiempo producida por la distribución de la materia, deformación que produce las trayectorias que atribuimos a la fuerza de gravedad.
Descubrimos entonces que el espacio-tiempo no es euclidiano y que la curvatura existente en él es equivalente a las fórmulas del campo gravitacional de la física newtoniana. La geometría euclidiana sólo es válida en pequeñas partes del espacio-tiempo, lo suficientemente infinitesimales como para que la curvatura no origine deformaciones apreciables. En un campo gravitatorio, la línea trazada por la trayectoria inercial de una partícula no es una línea recta, sino una geodésica: la distancia más corta entre dos puntos deja de ser una recta, sólo lo es en regiones pequeñas donde aparece como recta lo que es realmente una sección de curva. La fuerza de la atracción gravitatoria desaparece convertida en muestra de la estructura geométrica del espacio-tiempo provocada por la distribución de la materia. La generalización del principio de relatividad garantiza que todas las leyes de la física son invariantes para todos los sistemas de referencia posibles.
Читать дальше