Iam-Choon Khoo - Liquid Crystals

Здесь есть возможность читать онлайн «Iam-Choon Khoo - Liquid Crystals» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Liquid Crystals: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Liquid Crystals»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The latest edition of the leading resource on the properties and applications of liquid crystals
Liquid Crystals,
Liquid Crystals
Liquid Crystals

Liquid Crystals — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Liquid Crystals», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Equation (3.56), together with Eq. (3.57), forms the basis for studying the hydrodynamics of an isotropic fluid. Note that since the viscosity for картинка 253is a spatial derivative of the stress tensor, which in turn is a spatial derivative of the velocity, is of the form Equation 354 therefore may be written as 358 - фото 254is of the form Equation 354 therefore may be written as 358 which is usually - фото 255. Equation (3.54), therefore, may be written as

(3.58) which is usually referred to as the NavierStokes equation for an - фото 256

which is usually referred to as the Navier–Stokes equation for an incompressible fluid.

3.5.2. General Stress Tensor for Nematic Liquid Crystals

The general theoretical framework for describing the hydrodynamics of liquid crystals has been developed principally by Leslie [16] and Ericksen [17]. Their approaches account for the fact that the stress tensor depends not only on the velocity gradients but also on the orientation and rotation of the director. Accordingly, the stress tensor is given by

(3.59) where the A αβs are defined by 360 Note that all the other terms on the - фото 257

where the A αβs are defined by

(3.60) Note that all the other terms on the righthand side of Eq 359involve the - фото 258

Note that all the other terms on the right‐hand side of Eq. (3.59)involve the director orientation, except the fourth term, α 4 A αβ.This is the same term as that for an isotropic fluid (cf. Eq. [ 3.57]), that is, α 4= 2 η .

Therefore, in this formalism, we have six so‐called Leslie coefficients, α 1, α 2,…, α 6, which have the dimension of viscosity coefficients. It was shown by Parodi [18] that

(3.61) Liquid Crystals - изображение 259

and so there are really five independent coefficients.

In the next few sections, we will study exemplary cases of director axis orientation and deformation, and we will show how these Leslie coefficients are related to other commonly used viscosity coefficients.

Figure 311 Sheer flow in the presence of an applied magnetic field 353 - фото 260

Figure 3.11. Sheer flow in the presence of an applied magnetic field.

3.5.3. Flows with Fixed Director Axis Orientation

Consider here the simplest case of flows in which the director axis orientation is held fixed. This may be achieved by a strong externally applied magnetic field (see Figure 3.11), where the magnetic field is along the direction картинка 261. Consider the case of shear flow, where the velocity is in the z‐ direction, and the velocity gradient is along the x‐ direction. This process could occur, for example, in liquid crystals confined by two parallel plates in the yz plane.

In terms of the orientation of the director axis, there are three distinct possibilities involving three corresponding viscosity coefficients:

1 η1: is parallel to the velocity gradient, that is, along the x‐axis (θ = 90°, ϕ = 0°).

2 η2: is parallel to the flow velocity, that is, along the z‐axis and lies in the shear plane x‐z (θ = 0°, ϕ = 0°).

3 η3: is perpendicular to the shear plane, that is, along the y‐axis (θ = 0°, ϕ = 90°).

These three configurations have been investigated by Miesowicz [19], and the η s are known as Miesowicz coefficients. In the original paper, as well as in the treatment by deGennes [3], the definitions of η 1and η 3are interchanged. In deGennes notation, in terms of η a, η b, and η c, we have η a= η 1, η b= η 2, and η c= η 3. The notation used here is attributed to Helfrich [6], which is now the conventional one.

To obtain the relations between η 1,2,3and the Leslie coefficients α 1,2,…,6, one could evaluate the stress tensor σ αβand the shear rate A αβfor various director orientations and flow and velocity gradient directions. From these considerations, the following relationships are obtained [3]:

(3.62) In the shear plane x z the general effective viscosity coefficient is - фото 262

In the shear plane xz , the general effective viscosity coefficient is actually more correctly expressed in the form [20]

(3.63) in order to account for angular velocity gradients The coefficient η 12is - фото 263

in order to account for angular velocity gradients. The coefficient η 1,2is related to the Leslie coefficient α 1by

(3.64) картинка 264

3.5.4. Flows with Director Axis Reorientation

The preceding section deals with the case where the director axis is fixed during fluid flow. In more general situations, director axis reorientation often accompanies fluid flows and vice versa. Taking into account the moment of inertia I and the torque Liquid Crystals - изображение 265, where картинка 266is the molecular internal elastic field defined in Eq. (3.11), картинка 267is the torque associated with an externally applied field, and картинка 268is the viscous torque associated with the viscous forces, the equation of motion describing the angular acceleration d Ω/ dt as the director axis may be written as

(3.65) The viscous torque consists of two components 3 one arising from pure - фото 269

The viscous torque картинка 270consists of two components [3]: one arising from pure rotational effect (i.e. no coupling to the fluid flow) given by картинка 271and another arising from coupling to the fluid motion given by Therefore we have 366 Here is the rate of change of the d - фото 272. Therefore, we have

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Liquid Crystals»

Представляем Вашему вниманию похожие книги на «Liquid Crystals» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Liquid Crystals»

Обсуждение, отзывы о книге «Liquid Crystals» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x