1 Cover
2 Title Page Nonlinear Filters Theory and Applications Peyman Setoodeh McMaster University Ontario, Canada Saeid Habibi McMaster University Ontario, Canada Simon Haykin McMaster University Ontario, Canada
3 Copyright
4 Dedication
5 List of Figures
6 List of Table
7 Preface
8 Acknowledgments
9 Acronyms
10 1 Introduction1.1 State of a Dynamic System 1.2 State Estimation 1.3 Construals of Computing 1.4 Statistical Modeling 1.5 Vision for the Book
11 2 Observability2.1 Introduction 2.2 State‐Space Model 2.3 The Concept of Observability 2.4 Observability of Linear Time‐Invariant Systems 2.5 Observability of Linear Time‐Varying Systems 2.6 Observability of Nonlinear Systems 2.7 Observability of Stochastic Systems 2.8 Degree of Observability 2.9 Invertibility 2.10 Concluding Remarks
12 3 Observers3.1 Introduction 3.2 Luenberger Observer 3.3 Extended Luenberger‐Type Observer 3.4 Sliding‐Mode Observer 3.5 Unknown‐Input Observer 3.6 Concluding Remarks
13 4 Bayesian Paradigm and Optimal Nonlinear Filtering4.1 Introduction 4.2 Bayes' Rule 4.3 Optimal Nonlinear Filtering 4.4 Fisher Information 4.5 Posterior Cramér–Rao Lower Bound 4.6 Concluding Remarks
14 5 Kalman Filter5.1 Introduction 5.2 Kalman Filter 5.3 Kalman Smoother 5.4 Information Filter 5.5 Extended Kalman Filter 5.6 Extended Information Filter 5.7 Divided‐Difference Filter 5.8 Unscented Kalman Filter 5.9 Cubature Kalman Filter 5.10 Generalized PID Filter 5.11 Gaussian‐Sum Filter 5.12 Applications 5.13 Concluding Remarks
15 6 Particle Filter6.1 Introduction 6.2 Monte Carlo Method 6.3 Importance Sampling 6.4 Sequential Importance Sampling 6.5 Resampling 6.6 Sample Impoverishment 6.7 Choosing the Proposal Distribution 6.8 Generic Particle Filter 6.9 Applications 6.10 Concluding Remarks
16 7 Smooth Variable‐Structure Filter7.1 Introduction 7.2 The Switching Gain 7.3 Stability Analysis 7.4 Smoothing Subspace 7.5 Filter Corrective Term for Linear Systems 7.6 Filter Corrective Term for Nonlinear Systems 7.7 Bias Compensation 7.8 The Secondary Performance Indicator 7.9 Second‐Order Smooth Variable Structure Filter 7.10 Optimal Smoothing Boundary Design 7.11 Combination of SVSF with Other Filters 7.12 Applications 7.13 Concluding Remarks
17 8 Deep Learning8.1 Introduction 8.2 Gradient Descent 8.3 Stochastic Gradient Descent 8.4 Natural Gradient Descent 8.5 Neural Networks 8.6 Backpropagation 8.7 Backpropagation Through Time 8.8 Regularization 8.9 Initialization 8.10 Convolutional Neural Network 8.11 Long Short‐Term Memory 8.12 Hebbian Learning 8.13 Gibbs Sampling 8.14 Boltzmann Machine 8.15 Autoencoder 8.16 Generative Adversarial Network 8.17 Transformer 8.18 Concluding Remarks
18 9 Deep Learning‐Based Filters9.1 Introduction 9.2 Variational Inference 9.3 Amortized Variational Inference 9.4 Deep Kalman Filter 9.5 Backpropagation Kalman Filter 9.6 Differentiable Particle Filter 9.7 Deep Rao–Blackwellized Particle Filter 9.8 Deep Variational Bayes Filter 9.9 Kalman Variational Autoencoder 9.10 Deep Variational Information Bottleneck 9.11 Wasserstein Distributionally Robust Kalman Filter 9.12 Hierarchical Invertible Neural Transport 9.13 Applications 9.14 Concluding Remarks
19 10 Expectation Maximization10.1 Introduction 10.2 Expectation Maximization Algorithm 10.3 Particle Expectation Maximization 10.4 Expectation Maximization for Gaussian Mixture Models 10.5 Neural Expectation Maximization 10.6 Relational Neural Expectation Maximization 10.7 Variational Filtering Expectation Maximization 10.8 Amortized Variational Filtering Expectation Maximization 10.9 Applications 10.10 Concluding Remarks
20 11 Reinforcement Learning‐Based Filter11.1 Introduction 11.2 Reinforcement Learning 11.3 Variational Inference as Reinforcement Learning 11.4 Application 11.5 Concluding Remarks
21 12 Nonparametric Bayesian Models12.1 Introduction 12.2 Parametric vs Nonparametric Models 12.3 Measure‐Theoretic Probability 12.4 Exchangeability 12.5 Kolmogorov Extension Theorem 12.6 Extension of Bayesian Models 12.7 Conjugacy 12.8 Construction of Nonparametric Bayesian Models 12.9 Posterior Computability 12.10 Algorithmic Sufficiency 12.11 Applications 12.12 Concluding Remarks
22 References
23 Index
24 Wiley End User License Agreement
1 Chapter 11Table 11.1 Reinforcement learning and variational inference viewed as expect...
1 Chapter 1 Figure 1.1 The encoder of an asymmetric autoencoder plays the role of a nonl...
2 Chapter 6Figure 6.1 Typical posterior estimate trajectories for: (a) sampling importa...
3 Chapter 7Figure 7.1 The SVSF state estimation concept.Figure 7.2 Effect of the smoothing subspace on chattering: (a) and (b) ....Figure 7.3 Combining the SVSF with Bayesian filters.
1 Cover
2 Table of Contents
3 Title Page Nonlinear Filters Theory and Applications Peyman Setoodeh McMaster University Ontario, Canada Saeid Habibi McMaster University Ontario, Canada Simon Haykin McMaster University Ontario, Canada
4 Copyright
5 Dedication
6 List of Figures
7 List of Table
8 Preface
9 Acknowledgments
10 Acronyms
11 Begin Reading
12 References
13 Index
14 Wiley End User License Agreement
1 iii
2 iv
3 v
4 xiii
5 xv
6 xvii
7 xviii
8 xix
9 xxi
10 xxii
11 1
12 2
13 3
14 4
15 5
16 7
17 8
18 9
19 10
20 11
21 12
22 13
23 14
24 15
25 16
26 17
27 18
28 19
29 20
30 21
31 22
32 23
33 24
34 25
35 26
36 27
37 29
38 30
39 31
40 32
41 33
42 34
43 35
44 36
45 37
46 38
47 39
48 41
49 42
50 43
51 44
52 45
53 46
54 47
55 49
56 50
57 51
58 52
59 53
60 54
61 55
62 56
63 57
64 58
65 59
66 60
67 61
68 62
69 63
70 64
71 65
72 66
73 67
74 68
75 69
76 70
77 71
78 72
79 73
80 74
81 75
82 76
83 77
84 78
85 79
86 80
87 81
88 82
89 83
90 85
91 86
92 87
93 88
94 89
95 90
96 91
97 92
98 93
99 94
100 95
101 96
102 97
103 98
104 99
105 100
106 101
107 102
108 103
109 104
110 105
111 106
112 107
113 108
114 109
115 110
116 111
117 112
118 113
119 113
120 114
121 115
122 116
123 117
124 118
125 119
126 120
127 121
128 122
129 123
130 124
131 125
132 126
133 127
134 128
135 129
136 130
137 131
138 132
139 133
140 134
141 135
142 136
143 137
144 138
145 139
146 140
147 141
148 142
149 143
150 144
151 145
152 146
153 147
154 148
155 149
156 150
157 151
158 152
159 153
160 154
161 155
162 156
163 157
164 158
Читать дальше