Simon Haykin - Nonlinear Filters

Здесь есть возможность читать онлайн «Simon Haykin - Nonlinear Filters» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Nonlinear Filters: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Nonlinear Filters»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

NONLINEAR FILTERS
Discover the utility of using deep learning and (deep) reinforcement learning in deriving filtering algorithms with this insightful and powerful new resource Nonlinear Filters: Theory and Applications
Nonlinear Filters
Nonlinear Filters: Theory and Applications

Nonlinear Filters — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Nonlinear Filters», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

165 159

166 160

167 161

168 162

169 163

170 164

171 165

172 166

173 167

174 168

175 169

176 170

177 171

178 172

179 173

180 174

181 175

182 176

183 177

184 178

185 179

186 180

187 181

188 182

189 183

190 185

191 186

192 187

193 188

194 189

195 190

196 191

197 192

198 193

199 194

200 195

201 196

202 197

203 198

204 199

205 200

206 201

207 203

208 204

209 205

210 206

211 207

212 208

213 209

214 210

215 211

216 213

217 214

218 215

219 216

220 217

221 218

222 219

223 220

224 221

225 222

226 223

227 224

228 225

229 226

230 227

231 228

232 229

233 230

234 231

235 232

236 233

237 234

238 235

239 236

240 237

241 238

242 239

243 240

244 241

245 242

246 243

247 244

248 245

249 246

250 247

251 248

252 249

253 250

254 251

255 253

256 254

257 255

258 256

259 257

260 258

261 259

262 260

263 261

264 262

265 263

266 264

267 265

268 266

269 267

270 268

271 269

272 270

273 271

274 272

275 273

276 274

Nonlinear Filters

Theory and Applications

Peyman Setoodeh

McMaster University

Ontario, Canada

Saeid Habibi

McMaster University

Ontario, Canada

Simon Haykin

McMaster University

Ontario, Canada

This edition first published 2022 2022 by John Wiley Sons Inc All rights - фото 3

This edition first published 2022 © 2022 by John Wiley & Sons, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Peyman Setoodeh, Saeid Habibi, and Simon Haykin to be identified as the authors of this work has been asserted in accordance with law.

Registered Office John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office 111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print‐on‐demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty The contents of this work are intended to further general scientific research, understanding, and discussion only and are not intended and should not be relied upon as recommending or promoting scientific method, diagnosis, or treatment by physicians for any particular patient. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of medicines, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each medicine, equipment, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging‐in‐Publication Data Applied for: ISBN: 9781118835814

Cover Design: Wiley

Cover Image: © Emrah Turudu/Getty Images

To the memory of RudolfEmil Kalman

Preface

Taking an algorithmic approach, this book provides a step towards bridging the gap between control theory, statistical signal processing, and machine learning regarding the state/parameter estimation problem. State estimation is an important concept that has profoundly influenced different branches of science and engineering. State of a system refers to a minimal record of the past history, which is required for predicting the future behavior. In this regard, a dynamic system can be described from the state perspective by selecting a set of independent variables as state variables. It is often desirable to know the state variables, and in control applications, to force them to follow desired trajectories in the state space. State estimation refers to the process of reconstructing the hidden or latent state variables, which cannot be directly measured, from system inputs and outputs in the minimum possible length of time. Filtering algorithms, which are deployed for state estimation, aim at minimizing the error between the estimated and the true values of the state variables.

The first part of the book is dedicated to classic estimation algorithms. A thorough presentation of the notion of observability, which refers to the ability to reconstruct the state variables from measurements, is followed by covering a number of observers as state estimators for deterministic systems. Regarding stochastic systems, optimal Bayesian filtering is presented that provides a conceptual solution for the general state estimation problem. Different Bayesian filtering algorithms have been developed based on computationally tractable approximations of the conceptual Bayesian solution. For the special case of linear systems with Gaussian noise, Kalman filter provides the optimal Bayesian solution. To extend the application of Kalman filter to nonlinear systems, two main approaches have been proposed to provide suboptimal solutions: using power series to approximate the nonlinear functions and approximating the probability distributions. While extended Kalman filter, extended information filter, and divided‐difference filter approximate the nonlinear functions, unscented Kalman filter, cubature Kalman filter, and particle filter approximate the probability distributions. Other Kalman filter variants include Gaussian‐sum filter, which handles non‐Gaussianity, and generalized PID filter. Among the mentioned filters, particle filter is capable of handling nonlinear and non‐Gaussian systems. Smooth variable‐structure filter, which has been derived based on a stability theorem, is able to handle model uncertainties. Moreover, it benefits from using a secondary set of performance indicators in addition to the innovation vector.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Nonlinear Filters»

Представляем Вашему вниманию похожие книги на «Nonlinear Filters» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Nonlinear Filters»

Обсуждение, отзывы о книге «Nonlinear Filters» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x