Manuel Pastor - Computational Geomechanics

Здесь есть возможность читать онлайн «Manuel Pastor - Computational Geomechanics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Computational Geomechanics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Computational Geomechanics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

COMPUTATIONAL GEOMECHANICS
Computational Geomechanics: Theory and Applications, Second Edition

Computational Geomechanics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Computational Geomechanics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Its drawback lies in the fact that in the presence of saturated and unsaturated states, the stress tensor changes between the two states; when the pore air is absent, the constitutive equations for saturated states cannot be recovered from those for unsaturated states without additional control (Sheng et al. 2004). This precludes practically its application in soil dynamics; capturing liquefaction becomes a problem.

The compressibility of the solid grains was also considered by Khalili et al. (2000) in their stress tensor

(2.54) Computational Geomechanics - изображение 183

where a 1, a 2are the effective stress parameters defined as Computational Geomechanics - изображение 184, Computational Geomechanics - изображение 185, c sis the grain compressibility, c the drained compressibility of the soil structure, and c mthe tangent compressibility of the soil structure with respect to a change in capillary pressure.

In the following, we make use of (2.51)with the assumption that solid grains are incompressible, i.e. α = 1. The governing equations are derived again, using the hybrid mixture theory, as has been done by Schrefler (1995) and Lewis and Schrefler (1998). Isothermal conditions are assumed to hold, as throughout this book. For the full non‐isothermal case, the interested reader is referred to Lewis and Schrefler (1998) and Schrefler (2002).

We first recall briefly the kinematics of the system.

2.5.1 Kinematic Equations

As indicated in Chapter 1, a multiphase medium can be described as the superposition of all π phases, π = 1, 2, , κ, i.e. in the current configuration, each spatial point xis simultaneously occupied by material points X πof all phases. The state of motion of each phase is however described independently.

In a Lagrangian or material description of motion, the position of each material point x πat time t is a function of its placement in a chosen reference configuration, X πand of the current time t

(2.55) Computational Geomechanics - изображение 186

To keep this mapping continuous and bijective at all times, the determinant of the Jacobian of this transformation must not equal zero and must be strictly positive, since it is equal to the determinant of the deformation gradient tensor F π

(2.56) where U πis the right stretch tensor V πthe left stretch tensor and the - фото 187

where U πis the right stretch tensor, V πthe left stretch tensor, and the skew‐symmetric tensor R πgives the rigid body rotation. Differentiation with respect to the appropriate coordinates of the reference or actual configuration is respectively denoted by comma or slash, i.e.

(2.57) Because of the nonsingularity of the Lagrangian relationship 255 its - фото 188

Because of the non‐singularity of the Lagrangian relationship (2.55), its inverse can be written and the Eulerian or spatial description of motion follows

(2.58) The material time derivative of any differentiable function f π X t given in - фото 189

The material time derivative of any differentiable function f π( X, t) given in its spatial description and referred to a moving particle of the π phase is

(2.59) If superscript α is used for the time derivative is taken moving with the α - фото 190

If superscript α is used for картинка 191, the time derivative is taken moving with the α phase.

2.5.2 Microscopic Balance Equations

In the hybrid mixture theories, the microscopic situation of any π phase is first described by the classical equations of continuum mechanics. At the interfaces to other constituents, the material properties and thermodynamic quantities may present step discontinuities. As throughout the book, the effects of the interfaces are here not taken into account explicitly. These are introduced, e.g. in Schrefler (2002) and Gray and Schrefler (2001, 2007).

For a thermodynamic property ψ , the conservation equation within the π phase may be written as

(2.60) where is the local value of the velocity field of the π phase in a fixed point - фото 192

where картинка 193is the local value of the velocity field of the π phase in a fixed point in space, iis the flux vector associated with Ψ , gthe external supply of Ψ , and Gis the net production of Ψ . The relevant thermodynamic properties Ψ are mass, momentum, energy, and entropy. The values assumed by i, g, and Gare given in Table 2.2(Hassanizadeh and Gray 1980, 1990; Schrefler 1995). The constituents are assumed to be microscopically nonpolar; hence, the angular momentum balance equation has been omitted. This equation shows, however, that the stress tensor is symmetric.

Table 2.2 Thermodynamic properties for the microscopic mass balance equations.

Sources: Adapted from Hassanizadeh and Gray (1980, 1990), and Schrefler (1995).

Quantity ψ i g G
Mass 1 0 0 0
Momentum картинка 194 t m g 0
Energy картинка 195 картинка 196 картинка 197 0
Entropy Λ Φ S φ

2.5.3 Macroscopic Balance Equations

For isothermal conditions, as here assumed, the macroscopic balance equations for mass, linear momentum, and angular momentum are then obtained by systematically applying the averaging procedures to the microscopic balance Equation (2.60)as outlined in Hassanizadeh and Gray (1979a, 1979b, 1980). The balance equations have here been specialized for a deforming porous material, where the flow of water and of moist air (mixture of dryair and vapor) is taking place (see Schrefler 1995).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Computational Geomechanics»

Представляем Вашему вниманию похожие книги на «Computational Geomechanics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Computational Geomechanics»

Обсуждение, отзывы о книге «Computational Geomechanics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x