Manuel Pastor - Computational Geomechanics

Здесь есть возможность читать онлайн «Manuel Pastor - Computational Geomechanics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Computational Geomechanics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Computational Geomechanics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

COMPUTATIONAL GEOMECHANICS
Computational Geomechanics: Theory and Applications, Second Edition

Computational Geomechanics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Computational Geomechanics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

2.3.2 The Modification of Equations Necessary for Partially Saturated Conditions

The necessary modification of Equations (2.20) and (2.21) will be derived below, noting that generally we shall consider partial saturation only in the slower phenomena for which up approximation is permissible.

Before proceeding, we must note that the effective stress definition is modified and the effective pressure now becomes (viz Section 1.3.3)

(2.24) with the effective stress still defined by 21 Equation 220 remains - фото 134

with the effective stress still defined by (2.1).

Equation (2.20) remains unaltered in form whether or not the material is saturated but the overall density ρ is slightly different now. Thus in place of ( 2.12), we can write

(2.25) neglecting the weight of air The correction is obviously small and its effect - фото 135

neglecting the weight of air. The correction is obviously small and its effect insignificant.

However, (2.21) will now appear in a modified form which we shall derive here.

First, the water momentum equilibrium, Equation (2.13), will be considered. We note that its form remains unchanged but with the variable p being replaced by p w. We thus have

(2.26a) 226b As before we have neglected the relative acceleration of the fluid - фото 136

(2.26b) As before we have neglected the relative acceleration of the fluid to the - фото 137

As before, we have neglected the relative acceleration of the fluid to the solid.

Equation (2.14), defining the permeabilities, remains unchanged as

(2.27a) картинка 138

(2.27b) картинка 139

However, in general, only scalar, i.e. isotropic, permeability will be used here

(2.28a) картинка 140

(2.28b) картинка 141

where Iis the identity matrix. The value of k is, however, dependent strongly on S wand we note that:

(2.29) картинка 142

Such typical dependence is again shown in Figure 1.6.

Finally, the conservation Equation (2.16) has to be restructured, though the reader will recognize similarities.

The mass balance will once again consider the divergence of fluid flow w i,ito be augmented by terms previously derived (and some additional ones). These are

1 Increased pore volume due to change of strain assuming no change of saturation: δijdεij = dεii

2 An additional volume stored by compression of the fluid due to fluid pressure increase: nSwdpw/Kf

3 Change of volume of the solid phase due to fluid pressure increase: (1 − n)χwdpw/Ks

4 Change of volume of solid phase due to change of intergranular contact stress: −KT/Ks(dεii + χwdpw/Ks)

5 And a new term taking into account the change of saturation: ndSw

Adding to the above, as in Section 2.2, the terms involving density changes, on thermal expansion, the conservation equation now becomes:

(2.30a) or 230b Now however Q is different from that given in Equation 217and - фото 143

or

(2.30b) Now however Q is different from that given in Equation 217and we have in - фото 144

Now, however, Q *is different from that given in Equation 2.17and we have in its place

(2.30c) which of course must be identical with 217 when S w 1 and χ w 1 ie - фото 145

which, of course, must be identical with ( 2.17) when S w= 1 and χ w= 1, i.e. when we have full saturation. The above modification is mainly due to an additional term to those defining the increased storage in ( 2.17). This term is due to the changes in the degree of saturation and is simply:

(2.31) but here we introduce a new parameter C Sdefined as 232 The final - фото 146

but here we introduce a new parameter C Sdefined as

(2.32) The final elimination of win a manner identical to that used when deriving - фото 147

The final elimination of win a manner identical to that used when deriving (2.21) gives (neglecting density variation):

(2.33a) or 233b The small changes required here in the solution process are such - фото 148

or

(2.33b) The small changes required here in the solution process are such that we found - фото 149

The small changes required here in the solution process are such that we found it useful to construct our computer program for the partially saturated form, with the fully saturated form being a special case.

In the time‐stepping computation, we still always assume that the parameters S w, k w, and C schange slowly and hence we will compute these at the start of the time interval keeping them subsequently constant.

Previously, we mentioned several typical cases where pressure can become negative and hence saturation drops below unity. One frequently encountered example is that of the flow occurring in the capillary zone during steady‐state seepage . The solution to the problem can, of course, be obtained from the general equations simply by neglecting all acceleration and fixing the solid displacements at zero (or constant) values.

If we consider a typical dam or a water‐retaining embankment shown in Figure 2.3, we note that, on all the surfaces exposed to air, we have apparently incompatible boundary conditions. These are:

Clearly both conditions cannot be simultaneously satisfied and it is readily - фото 150

Clearly, both conditions cannot be simultaneously satisfied and it is readily concluded that only the second is true above the area where the flow emerges. Of course, when the flow leaves the free surface, the reverse is true.

Computation will easily show that negative pressures develop near the surface and that, therefore, a partially saturated zone with very low permeability must exist. The result of such a computation is shown in Figure 2.3and indeed it will be found that very little flow occurs above the zero‐pressure contour. This contour is, in fact, the well‐known Phreatic line and the partially saturated material procedure has indeed been used frequently purely as a numerical device for its determination (see Desai 1977a, 1977b; Desai and Li 1983 etc.). Another example is given in Figure 2.4. Here a numerical solution of Zienkiewicz et al. (1990b) is given for a problem for which experimental data are available from Liakopoulos (1965).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Computational Geomechanics»

Представляем Вашему вниманию похожие книги на «Computational Geomechanics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Computational Geomechanics»

Обсуждение, отзывы о книге «Computational Geomechanics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x