Manuel Pastor - Computational Geomechanics

Здесь есть возможность читать онлайн «Manuel Pastor - Computational Geomechanics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Computational Geomechanics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Computational Geomechanics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

COMPUTATIONAL GEOMECHANICS
Computational Geomechanics: Theory and Applications, Second Edition

Computational Geomechanics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Computational Geomechanics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

or

(2.23b) and thus we can eliminate p from 211 and 213 The resulting system which - фото 102

and thus we can eliminate p from (2.11) and (2.13).

The resulting system which is fully discussed in Zienkiewicz and Shiomi (1984) is not written down here as we shall derive this alternative form in Chapter 3using the total displacement of water U= U R+ uas the variable. It presents a very convenient basis for using a fully explicit temporal scheme of integration (see Chan et al. 1991) but it is not applicable for long‐term studies leading to steady‐state conditions, as the water displacement Uthen increases indefinitely.

It is fortunate that the inaccuracies of the up version are pronounced only in high‐frequency, short‐duration, phenomena, since, for such problems, we can conveniently use explicit temporal integration. Here a very small time increment can be used for the short time period considered (see Chapter 3).

Table 2.1summarizes various forms of governing equations used.

2.2.3 Limits of Validity of the Various Approximations

It is, of course, important to know the degree of approximation involved in various differential equation systems. Thus, it is of interest to know under what circumstances undrained conditions can be assumed, to define the behavior of the material and when the simplified equation system discussed in the previous section is applicable, without introducing serious error. An attempt to answer these problems was made by Zienkiewicz et al. (1980). The basis was the consideration of a one‐dimensional set of linearized equations of the full systems (2.11), (2.13), and (2.16) and of the approximations (2.20) and (2.21). The limiting case in which w i,i= 0 (representing undrained conditions) was also considered.

Table 2.1 Comparative sets of coupled equations governing deformation and flow.

uwp equations (exact) [(2.11), (2.13), and (2.16)]
u p approximation for dynamics of lower frequencies Exact for consolidation - фото 103
up approximation for dynamics of lower frequencies. Exact for consolidation [(2.20), (2.21)]
u U only convective terms neglected 372 In all the above - фото 104
uU, only convective terms neglected (3.72)
In all the above σ σ α m p and d σ D dε DS d u - фото 105
In all the above
σ ″= σ+ α m p and d σ ″= D = DS d u

For all these conditions, the exact solution of the equation is possible. We consider thus that the only physical variation is in the vertical, x 1, direction ( x 1= x ) and then we have

where D is called the onedimensional constrained modulus E is Youngs modulus - фото 106

where D is called the one‐dimensional constrained modulus, E is Young’s modulus and ν is Poisson’s ratio of the linear elastic soil matrix, also

The differential equations are in place of 211 In place of 213 - фото 107

The differential equations are, in place of (2.11):

In place of 213 and in place of 216 - фото 108

In place of (2.13):

and in place of 216 with Taking K - фото 109

and in place of (2.16):

Computational Geomechanics - изображение 110

with

Computational Geomechanics - изображение 111

Taking K s→ ∞

Computational Geomechanics - изображение 112

For a periodic applied surface load

картинка 113

a periodic solution arises after the dissipation of the initial transient in the form

Computational Geomechanics - изображение 114 Computational Geomechanics - изображение 115

and a system of ordinary linear differential equations is obtained in the frequency domain which can be readily solved by standard procedure.

The boundary conditions imposed are as shown in Figure 2.1. Thus, at x = L , u = 0, w = 0, and at x = 0, σ x= q , p = 0.

In Figure 2.1(taken from Zienkiewicz et al. (1980)), we show a comparison of various numerical results obtained by various approximations:

1 exact solution (Biot’s, labelled B)

2 the u−p equation approximation (labelled Z)

3 the undrained assumption (w = 0) and

4 the consolidation equation obtained by omitting all acceleration terms (labelled C).

The reader will note that the results are plotted against two nondimensional coefficients:

where k and k are the two definitions of permeability discussed earlier In - фото 116

where k′ and k are the two definitions of permeability discussed earlier.

In the above

where L is a typical length such as the length of the onedimensional soil - фото 117

where L is a typical length such as the length of the one‐dimensional soil column under consideration, g is the gravitational acceleration,

is the speed of sound is the natural vibration period and T is the period of - фото 118

is the speed of sound, is the natural vibration period and T is the period of excitation The second - фото 119is the natural vibration period and T is the period of excitation.

The second nondimensional parameter is defined as

Figure 21 The soil column variation of pore pressure with depth for various - фото 120

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Computational Geomechanics»

Представляем Вашему вниманию похожие книги на «Computational Geomechanics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Computational Geomechanics»

Обсуждение, отзывы о книге «Computational Geomechanics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x