Manuel Pastor - Computational Geomechanics

Здесь есть возможность читать онлайн «Manuel Pastor - Computational Geomechanics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Computational Geomechanics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Computational Geomechanics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

COMPUTATIONAL GEOMECHANICS
Computational Geomechanics: Theory and Applications, Second Edition

Computational Geomechanics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Computational Geomechanics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The local thermodynamic equilibrium hypothesis is assumed to hold because the time scale of the modeled phenomena is substantially larger than the relaxation time required reaching equilibrium locally. The temperatures of each constituent in a generic point are hence equal. Further, the constituents are assumed to be immiscible and chemically nonreacting. All fluids are assumed to be in contact with the solid phase. As throughout this book, stress is defined as tension positive for the solid phase, while pore pressure is defined as compressively positive for the fluids.

In the averaging procedure, the volume fractions η πappear which are identified as follows: for solid phase η s= 1 − n , for water η w= nS w, and for air η a= nS a.

The averaged macroscopic mass balance equations are given next. For the solid phase, this equation reads

(2.61) where is the mass averaged solid phase velocity and ρ πis the intrinsic phase - фото 198

where картинка 199is the mass averaged solid phase velocity and ρ πis the intrinsic phase averaged density. The intrinsic phase averaged density ρ πis the density of the π phase averaged over the part of the control volume (Representative Elementary Volume, REV) occupied by the π phase. The phase averaged density ρ π, on the contrary, is the density of the π phase averaged over the total control volume. The relationship between the two densities is given by

(2.62) For water the averaged macroscopic mass balance equation reads 263 where - фото 200

For water, the averaged macroscopic mass balance equation reads

(2.63) Computational Geomechanics - изображение 201

where Computational Geomechanics - изображение 202is the quantity of water per unit time and volume, lost through evaporation and v wthe mass averaged water velocity.

For air, this equation reads

(2.64) where v ais the mass averaged air velocity The linear momentum balance - фото 203

where v ais the mass averaged air velocity.

The linear momentum balance equation for the fluid phases is

(2.65) where t πis the partial stress tensor ρ π b πthe external momentum supply due - фото 204

where t πis the partial stress tensor, ρ π b πthe external momentum supply due to gravity, ρ π a πthe volume density of the inertia force, картинка 205the sum of the momentum supply due to averaged mass supply, and the intrinsic momentum supply due to a change of density and referred to the deviation картинка 206of the velocity of constituent π from its mass averaged velocity, and картинка 207accounts for exchange of momentum due to mechanical interaction with other phases. is assumed to be different from zero only for fluid phases For the solid - фото 208is assumed to be different from zero only for fluid phases. For the solid phase, the linear momentum balance equation is hence

(2.66) The average angular momentum balance equation shows that for nonpolar media - фото 209

The average angular momentum balance equation shows that for nonpolar media, the partial stress tensor is symmetric t π ji= t π tjat the macroscopic level also and the sum of the coupling vectors of angular momentum between the phases vanishes.

2.5.4 Constitutive Equations

Constitutive models are selected here which are based on quantities currently measurable in laboratory or field experiments and which have been extensively validated. Most of them have been obtained from entropy inequality; see Hassanizadeh and Gray (1980, 1990).

It can be shown that the stress tensor in the fluid is

(2.67) Computational Geomechanics - изображение 210

where p πis the fluid pressure, and in the solid phase is

(2.68) Computational Geomechanics - изображение 211

with p s= p w S w+ p a S ain the case of thermodynamic equilibrium or for incompressible solid grains (2.50).

The sum of (2.67), written for air and water and of (2.68), gives the total stress σ , acting on a unit area of the volume fraction mixture

(2.69) This is the form of the effective stress 251 also called generalized Bishop - фото 212

This is the form of the effective stress (2.51), also called generalized Bishop stress (Nuth and Laloui 2008), employed in the following, as already explained.

Moist air in the pore system is assumed to be a perfect mixture of two ideal gases, dry air and water vapour, with π = ga and π = gw , respectively. The equation of a perfect gas is hence valid

(2.70) where M πis the molar mass of constituent π R the universal gas constant and - фото 213

where M πis the molar mass of constituent π , R the universal gas constant, and θ the common absolute temperature. Further, Dalton’s law applies and yields the molar mass of moisture

(2.71) Water is usually present in the pores as a condensed liquid separated from its - фото 214

Water is usually present in the pores as a condensed liquid, separated from its vapor by a concave meniscus because of surface tension. The capillary pressure is defined as p c= p g− p w, see Equation (2.43).

The momentum exchange term of the linear momentum balance equation for fluids has the form

(2.72) Computational Geomechanics - изображение 215

where v πsis the velocity of the π phase relative to the solid.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Computational Geomechanics»

Представляем Вашему вниманию похожие книги на «Computational Geomechanics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Computational Geomechanics»

Обсуждение, отзывы о книге «Computational Geomechanics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x