Ernst Lueder - Liquid Crystal Displays

Здесь есть возможность читать онлайн «Ernst Lueder - Liquid Crystal Displays» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Liquid Crystal Displays: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Liquid Crystal Displays»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

LIQUID CRYSTAL DISPLAYS
THE NEW EDITION OF THE GOLD-STANDARD IN TEACHING AND REFERENCING THE FUNDAMENTALS OF LCD TECHNOLOGIES

Liquid Crystal Displays — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Liquid Crystal Displays», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Figure 312 The reflective Fréedericksz cell a Crosssection b top view - фото 189

Figure 3.12 The reflective Fréedericksz cell. (a) Cross-section; (b) top view; (c) explanation of the operation of a reflective cell in the field-free state

The normally white cell with crossed polarizers cannot be transformed into a reflective version as this version has only one polarizer able to realize only parallel polarizers. This fact, however, renders the reflective cell somewhat more economic as the added mirror is cheaper than the saved polarizer.

The surface of the mirror and the lower edge of the LC material in Figure 3.12(a)are supposed to be located at z = d /2, which is not exactly feasible because of the presence of the ITO and the orientation layers. As both layers are very thin, around 100 nm each, this does not show up in the performance of the cell.

3.2.4 The Fréedericksz cell as a phase-only modulator

So far we have treated the Fréedericksz cell as an amplitude modulator, as it is required for realizing grey shades in displays. The phase was of no importance. In coherent optical signal processing, the phase of the light wave is crucial; a voltage controlled phase shift without altering the amplitude is often required. A component with that performance belongs to the group of Spatial Light Modulators (SLMs). Another SLM is a pixellated optical multiplier in the form of an LCD placed behind a picture in Figure 3.13. Each area in front of the pixels of the multiplier is multiplied by the grey shade in those pixels. In other words, it is multiplied by a value 1 corresponding to a fully transparent pixel, a value 0 corresponding to a black pixel, and all values ε(0, 1) corresponding to the grey shades. As this multiplication occurs with the speed of light and with all pixels operating in parallel, extremely high processing speeds are feasible with the SLMs of an electro-optical processor (Lu and Saleh, 1990).

Figure 313 An LCD used as an SLM operating as a multiplier The explanation of - фото 190

Figure 3.13 An LCD used as an SLM operating as a multiplier

The explanation of the SLM for phase-shifts starts with the most general Equations (3.40)and (3.41)of the Freedericksz cell containing the arbitrary angle a of the polarizer at the input and the pertinent angle γ of the analyser ( Figures 3.4(a)and 3.8).

Equations (3.40)and (3.41)yield, for γ = α (that is, for parallel polarizers), the Jones vectors Jzξ and Jzη measured in the ξ−η coordinates in Figure 3.4(a)

(3.88) 389 The Jones vector Jz of the light passing through the analyser - фото 191

(3.89) The Jones vector Jz of the light passing through the analyser parallel to the - фото 192

The Jones vector Jz% of the light passing through the analyser parallel to the polarizer is, for a = 0, n and a = n/2 and for no voltage applied,

(3.90) Liquid Crystal Displays - изображение 193

and

(3.91) The magnitude is constant whereas the phase changes with the distance z from - фото 194

The magnitude is constant, whereas the phase changes with the distance z from the input.

| Jzξ | from Equation (3.88)is plotted in Figure 3.14versus α and z . The constant magnitude 1 for α = 0, (π/2) and π independent of z is visible as well as the maximum amplitude modulation for α = π/4. However, we want arc Jzξ to change with the voltage V across the cell. To this aim, we consider the Fréedericksz cell in Figure 3.15, where a voltage has been applied to tilt the molecules by an angle φ . The linearly polarized light E 0stemming from the polarizer with angle α = 0 to the x -axis has to meet the boundary condition at the transition from the polarizer into the cell. The tangential components have to be equal on both sides, which means they are E 0in Figure 3.15. This indicates that the light wave has the wave vector parallel to the z axis If no voltage V is applied the LC molecules are - фото 195parallel to the z -axis. If no voltage V is applied, the LC molecules are parallel to the surface and the x -axis, yielding

Figure 314 Jzξ in Equation 388plotted versus α and z Figure 315 The - фото 196

Figure 3.14 | Jzξ | in Equation (3.88)plotted versus α and z

Liquid Crystal Displays - изображение 197

Figure 3.15 The linearly polarized light in parallel (α = 0) to the projection of the long axis of the LC molecules into the x-y plane

(3.92) Liquid Crystal Displays - изображение 198

With a large enough voltage V , all molecules are perpendicular to the surface or the x -axis, yielding

(3.93) Liquid Crystal Displays - изображение 199

From Equations (3.92)and (3.93), we detect the voltage-induced change of the refraction index Liquid Crystal Displays - изображение 200with n ||for the lower voltage and n┴ for the higher voltage. Along with Equation (3.90), for a given wavelength λ 0and for z = d , this provides

(3.94) Liquid Crystal Displays - изображение 201

with

(3.95) Liquid Crystal Displays - изображение 202

How n changes with V cannot yet be determined. For that we need the propagation of light obliquely to the LC molecules, which will be discussed in Chapter 6. So far, arc Jzξ ( V ) is determined by measurements.

Figure 316 Measured phaseshift curves of a Fréedericksz cell For λ 0 05 μ - фото 203

Figure 3.16 Measured phase-shift curves of a Fréedericksz cell

For λ 0= 0.5 μ, n┴ = 14 and n ||= 1.5 we notice that arc Jzξ may change from 2.8 × 2π × d to 3.2π × d . Obviously, the larger d the larger is the change of arc Jzξ , however, the necessary addressing voltage increases. For d = 3 μ we obtain arc Jzξ= [8.4 × 2π, 9 × 2π], a change of 0.6 × 2π. Figure 3.16shows in curve 1 with a = 0 a phase-only SLM with a maximum phase shift of 0.75π. Due to Equation (3.88), the other curves with a ≠ 0 cannot possess a constant magnitude, as is also visible in Figure 3.14.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Liquid Crystal Displays»

Представляем Вашему вниманию похожие книги на «Liquid Crystal Displays» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Liquid Crystal Displays»

Обсуждение, отзывы о книге «Liquid Crystal Displays» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x