Savo G. Glisic - Artificial Intelligence and Quantum Computing for Advanced Wireless Networks

Здесь есть возможность читать онлайн «Savo G. Glisic - Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

ARTIFICIAL INTELLIGENCE AND QUANTUM COMPUTING FOR ADVANCED WIRELESS NETWORKS
A practical overview of the implementation of artificial intelligence and quantum computing technology in large-scale communication networks Artificial Intelligence and Quantum Computing for Advanced Wireless Networks
Artificial Intelligence and Quantum Computing for Advanced Wireless Networks

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Chebyshev Spectral CNN ( ChebNet ) [45] approximates the filter g θby Chebyshev polynomials of the diagonal matrix of eigenvalues, that is, Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 659, where Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 660, and the values of картинка 661lie in [−1, 1]. The Chebyshev polynomials are defined recursively by T i(x) = 2x T i − 1(x) − T i − 2(x) with T 0(x) = 1 and T 1(x) = x. As a result, the convolution of a graph signal x with the defined filter g θis

(5.39) Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 662

where Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 663. As which can be proved by induction on i ChebNet takes the form 540 As an - фото 664, which can be proved by induction on i . ChebNet takes the form

(5.40) As an improvement over spectral CNN the filters defined by ChebNet are - фото 665

As an improvement over spectral CNN, the filters defined by ChebNet are localized in space, which means filters can extract local features independently of the graph size. The spectrum of ChebNet is mapped to [−1, 1] linearly. CayleyNet [47] further applies Cayley polynomials, which are parametric rational complex functions, to capture narrow frequency bands. The spectral graph convolution of CayleyNet is defined as

(5.41) where Re returns the real part of a complex number c 0is a real - фото 666

where Re (·) returns the real part of a complex number, c 0is a real coefficent, c jis a complex coefficent, i is the imaginary number, and h is a parameter that controls the spectrum of a Cayley filter. While preserving spatial locality, CayleyNet shows that ChebNet can be considered as a special case of CayleyNet.

GCN [14] introduces a first‐order approximation of ChebNet. Assuming K = 1 and λ max= 2, Eq. (5.40)is simplified as

(5.42) To restrict the number of parameters and avoid overfitting GCN further assume - фото 667

To restrict the number of parameters and avoid overfitting, GCN further assume θ = θ 0= − θ 1, leading to the following definition of a graph convolution:

(5.43) To allow multichannels of inputs and outputs GCN modifies Eq 543into a - фото 668

To allow multi‐channels of inputs and outputs, GCN modifies Eq. (5.43)into a compositional layer, defined as

(5.44) Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 669

where Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 670and f (·) is an activation function. Using Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 671empirically causes numerical instability to GCN. To address this problem, GCN applies a normalization to replace Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 672by Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 673with Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 674and Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 675Being a spectral‐based method, GCN can be also interpreted as a spatial‐based method. From a spatial‐based perspective, GCN can be considered as aggregating feature information from a node’s neighborhood. Equation (5.44)can be expressed as

(5.45) Several recent works made incremental improvements over GCN 14 by exploring - фото 676

Several recent works made incremental improvements over GCN [14] by exploring alternative symmetric matrices.

Adaptive Graph Convolutional Network ( AGCN ) [16] learns hidden structural relations unspecified by the graph adjacency matrix. It constructs a so‐called residual graph adjacency matrix through a learnable distance function that takes two nodes’ features as inputs.

DGCN [17] introduces a dual graph convolutional architecture with two graph convolutional layers in parallel. While these two layers share parameters, they use the normalized adjacency matrix and the PPMI matrix which capture nodes cooccurrence information through - фото 677and the PPMI matrix, which capture nodes’ co‐occurrence information through random walks sampled from a graph. The PPMI matrix is defined as

(5.46) Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 678

where v 1, v 2∈ V , ∣ DArtificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 679, and the count (·) function returns the frequency with which node v and/or node u co‐occur/occur in sampled random walks. By ensembling outputs from dual graph convolutional layers, DGCN encodes both local and global structural information without the need to stack multiple graph convolutional layers.

Spatialbased ConvGNNs : Analogous to the convolutional operation of a conventional CNN on an image, spatial‐based methods define graph convolutions based on a node’s spatial relations. Images can be considered as a special form of graph with each pixel representing a node. Each pixel is directly connected to its nearby pixels, as illustrated in Figure 5.3a (adopted from [38]). A filter is applied to a 3 × 3 patch by taking the weighted average of pixel values of the central node and its neighbors across each channel. Similarly, the spatial‐based graph convolutions convolve the central node’s representation with its neighbors’ representations to derive the updated representation for the central node, as illustrated in Figure 5.3b. From another perspective, spatial‐based ConvGNNs share the same idea of information propagation/message passing with RecGNNs. The spatial graph convolutional operation essentially propagates node information along edges.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»

Представляем Вашему вниманию похожие книги на «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»

Обсуждение, отзывы о книге «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x