Savo G. Glisic - Artificial Intelligence and Quantum Computing for Advanced Wireless Networks

Здесь есть возможность читать онлайн «Savo G. Glisic - Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

ARTIFICIAL INTELLIGENCE AND QUANTUM COMPUTING FOR ADVANCED WIRELESS NETWORKS
A practical overview of the implementation of artificial intelligence and quantum computing technology in large-scale communication networks Artificial Intelligence and Quantum Computing for Advanced Wireless Networks
Artificial Intelligence and Quantum Computing for Advanced Wireless Networks

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Figure 46 Illustration of the soft margin for a linear support vector machine - фото 491

Figure 4.6 Illustration of the soft margin for a linear support vector machine (SVM).

(4.47) Figure 27of Chapter 2is modified to reflect better the definitions introduced - фото 492

Figure 2.7of Chapter 2is modified to reflect better the definitions introduced in this section and presented as Figure 4.6. Often, the optimization problem, Eq. (4.46), can be solved more easily in its dual formulation. The dual formulation provides also the key for extending SV machine to nonlinear functions.

Lagrange function: The key idea here is to construct a Lagrange function from the objective function ( primal objective function) and the corresponding constraints, by introducing a dual set of variables [95]. It can be shown that this function has a saddle point with respect to the primal and dual variables at the solution. So we have

(4.48) Here L is the Lagrangian and η i α i - фото 493

Here, L is the Lagrangian, and η i, картинка 494 α i, Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 495are Lagrange multipliers. Hence, the dual variables in Eq. (4.48)have to satisfy positivity constraints, that is, Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 496where by картинка 497, we jointly refer to α iand Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 498In the saddle point, the partial derivatives of L with respect to the primal variables Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 499have to vanish; that is, and - фото 500, Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 501and Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 502 Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 503= 0. Substituting these conditions into Eq. (4.48)yields the dual optimization problem:

(4.49) In deriving Eq 449 we already eliminated the dual variables η i through - фото 504

In deriving Eq. (4.49), we already eliminated the dual variables η i, Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 505through condition Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 506 Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 507= 0, which can be reformulated as Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 508. Equation Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 509can be rewritten as Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 510, giving

(4.50) This is the socalled support vector expansion that is w can be completely - фото 511

This is the so‐called support vector expansion ; that is, w can be completely described as a linear combination of the training patterns x i. In a sense, the complexity of a function’s representation by SVs is independent of the dimensionality of the input space X , and depends only on the number of SVs. Moreover, note that the complete algorithm can be described in terms of dot products between the data. Even when evaluating f ( x ), we need not compute w explicitly. These observations will come in handy for the formulation of a nonlinear extension.

Computing b : Parameter b can be computed by exploiting the so‐called Karush−Kuhn−Tucker (KKT) conditions stating that at the point of the solution the product between dual variables and constraints has to vanish, giving α i( ε + ξ i− y i+ 〈 w , x i〉 + b ) = 0, Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 512, ( Cα i) ξ i= 0 and Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 513This allows us to draw several useful conclusions:

1 Only samples (xi, yi) with corresponding lie outside the ε ‐insensitive tube.

2 ; that is, there can never be a set of dual variables αi , that are both simultaneously nonzero. This allows us to conclude that(4.51) (4.52)

In conjunction with an analogous analysis on we have for b 453 Kernels We are interested in making the SV - фото 514, we have for b

(4.53) Kernels We are interested in making the SV algorithm nonlinear This for - фото 515

Kernels: We are interested in making the SV algorithm nonlinear. This, for instance, could be achieved by simply preprocessing the training patterns x iby a map Φ : XF into some feature space F , as already described in Chapter 2, and then applying the standard SV regression algorithm. Let us have a brief look at the example given in Figure 2.8of Chapter 2. We had (quadratic features in 2) with the map Φ : 2→ 3with Φ It is understood that the subscripts in this case refer to the components of - фото 516. It is understood that the subscripts in this case refer to the components of x 2. Training a linear SV machine on the preprocessed features would yield a quadratic function as indicated in Figure 2.8. Although this approach seems reasonable in the particular example above, it can easily become computationally infeasible for both polynomial features of higher order and higher dimensionality.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»

Представляем Вашему вниманию похожие книги на «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»

Обсуждение, отзывы о книге «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x