Savo G. Glisic - Artificial Intelligence and Quantum Computing for Advanced Wireless Networks

Здесь есть возможность читать онлайн «Savo G. Glisic - Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

ARTIFICIAL INTELLIGENCE AND QUANTUM COMPUTING FOR ADVANCED WIRELESS NETWORKS
A practical overview of the implementation of artificial intelligence and quantum computing technology in large-scale communication networks Artificial Intelligence and Quantum Computing for Advanced Wireless Networks
Artificial Intelligence and Quantum Computing for Advanced Wireless Networks

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
The trapezoidalshaped membership function where b is the center of the - фото 530

The trapezoidal‐shaped membership function:

where b is the center of the membership functions and parameters γ a and c - фото 531

where b is the center of the membership functions, and parameters γ , a , and c are mean values of the dispersion for the three examples of membership functions.. Could the above functions also be used for constructing an admissible Mercer kernel? Note that they are translation invariant functions, so the multidimensional function created by these kinds of functions based on product t ‐norm operator is also translation invariant. Furthermore, if we regard the multidimensional functions as translation invariant kernels, then the following theorem can be used to check whether these kernels are admissible Mercer kernels:

A translationinvariant kernel k (x, x i) = k (x − x i) is an admissible Mercer kernel if and only if the Fourier transform

is non negative 100 For the case of the triangle and generalized - фото 532

is nonnegative [100]. For the case of the triangle and generalized bell‐shaped membership functions, the Fourier transform is respectively as follows:

and Since both of them are nonnegative we can construct Mercer kernels with - фото 533

and

Since both of them are nonnegative we can construct Mercer kernels with - фото 534

Since both of them are non‐negative, we can construct Mercer kernels with triangle and generalized bell‐shaped membership functions. But the Fourier transform in the case of the trapezoidal‐shaped membership function is

which is not always nonnegative In conclusion the kernel can also be - фото 535

which is not always non‐negative. In conclusion, the kernel can also be regarded as a product‐type multidimensional triangle or a generalized bell‐shaped membership function, but not the trapezoidal‐shaped one. The notation картинка 536is also considered as a fuzzy logical operator, namely, the t‐norm‐based algebra product [101, 102]. The obtained Mercer kernels could be understood by means of the conjunction (and) used in the previous sections. Thus, one can assign some meanings to the constructed Mercer kernels to obtain linguistic interpretability.

Experience‐oriented FM via reduced‐set vectors: Given n training data the goal of experienceoriented FM is to construct a fuzzy model such as Eq - фото 537, the goal of experience‐oriented FM is to construct a fuzzy model such as Eq. (4.58)that has a good trade‐off between interpretability and accuracy. We examine the trade‐off using the proposed algorithm with two objectives: to minimize the number of fuzzy rules and maximize the accuracy, that is, the approximation and generalization performance.

Given the good performance of SVR, it is reasonable to share the successful experience of SVR in FM. So, SVR with Mercer kernels is employed to generate the initial fuzzy model and the available experience on the training data. It is also expected that a reduction in the number of rules could make the resulting rule base more interpretable and transparent. Thus, a simplification algorithm is introduced to generate reduced‐set vectors for simplifying the structure of the initial fuzzy model, and at the same time the parameters of the derived simplified model are adjusted by a hybrid learning algorithm including the linear ridge regression algorithm and the gradient descent method based on a new performance measure. As a start, let us reformulate Eq. (4.60)through a simple equivalent algebra transform to obtain

(4.62) Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 538

where c is the number of support vectors, Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 539 Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 540the parameters of the function Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 541and Θ ′ = Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 542denote the kernel parameters. Obviously, if k (x, x i) is created by a Gaussian, triangle, or generalized bell‐shaped membership function, then Eq. (4.62)is consistent with the TS fuzzy inference structure, and exhibits good performance under the optimal model selection procedures. However, c , that is, the number of support vectors, usually becomes quite large so that the fuzzy model suffers from being uninterpretable. To compensate for this drawback, c should be replaced by a smaller c f. Thus, a simplified fuzzy model is used:

(4.63) where c is the number of rules β i θ i θ 0i z j Θ are the consequent - фото 543

where c ′ is the number of rules, β i= ( θ i, θ 0i, z j, Θ ) are the consequent parameters of the rule x j z ij Θ j θ i θ 0i and Θ Θ 1 Θ d denote the dispersion - фото 544( x j, z ij, Θ j) θ i+ θ 0i, and Θ = ( Θ 1, … , Θ d) denote the dispersion parameters of the membership functions. The consequent parameter b does not remain unchanged anymore, and it is replaced by θ 0iin order to increase the adjustment ability of each consequent.

Rather than directly extracting support vectors to generate fuzzy rules, the FM problem is solved by learning the parameters in Eq. (4.63)while considering the experience of Eq. (4.62). It is expected that Eq. (4.63)would be able to describe the input–output behavior in the same way as Eq. (4.62). However, the experience acquired heavily depends on the selection of the hyperparameters [103, 104]. Improper selection of these hyperparameters may result in bad performance and bring on useless experience and information. Here, some selection methods are suggested:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»

Представляем Вашему вниманию похожие книги на «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»

Обсуждение, отзывы о книге «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x