Savo G. Glisic - Artificial Intelligence and Quantum Computing for Advanced Wireless Networks

Здесь есть возможность читать онлайн «Savo G. Glisic - Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

ARTIFICIAL INTELLIGENCE AND QUANTUM COMPUTING FOR ADVANCED WIRELESS NETWORKS
A practical overview of the implementation of artificial intelligence and quantum computing technology in large-scale communication networks Artificial Intelligence and Quantum Computing for Advanced Wireless Networks
Artificial Intelligence and Quantum Computing for Advanced Wireless Networks

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(4.17) must hold In the case of a linear network f x i z ijwhere the - фото 414

must hold. In the case of a linear network f ( x ) = i z ijwhere the relevance R j= f ( x ), such a decomposition is immediately given by R i ← j= z ij. However, in the general case, the neuron activation x jis a nonlinear function of z j. Nevertheless, for the hyperbolic tangent and the rectifying function – two simple monotonically increasing functions satisfying g (0) = 0‐the pre‐activations z ijstill provide a sensible way to measure the relative contribution of each neuron x ito R j. A first possible choice of relevance decomposition is based on the ratio of local and global pre‐activations and is given by

(4.18) These relevances R i jare easily shown to approximate the conservation - фото 415

These relevances R i ← jare easily shown to approximate the conservation properties, in particular:

(4.19) where the multiplier accounts for the relevance that is absorbed or injected - фото 416

where the multiplier accounts for the relevance that is absorbed (or injected) by the bias term. If necessary, the residual bias relevance can be redistributed onto each neuron x i. A drawback of the propagation rule of Eq. (4.18)is that for small values z j, relevances R j ← jcan take unbounded values. Unboundedness can be overcome by introducing a predefined stabilizer ε ≥ 0:

(4.20) The conservation law then becomes 421 where we can observe that some - фото 417

The conservation law then becomes

(4.21) where we can observe that some further relevance is absorbed by the stabilizer - фото 418

where we can observe that some further relevance is absorbed by the stabilizer. In particular, relevance is fully absorbed if the stabilizer ε becomes very large.

An alternative stabilizing method that does not leak relevance consists of treating negative and positive pre‐activations separately. Let Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 419and Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 420where – and + denote the negative and positive parts of z ijand b j. Relevance propagation is now defined as

(4.22) where α β 1 For example for αβ 12 the conservation law becomes 423 - фото 421

where α + β = 1. For example, for αβ = 1/2, the conservation law becomes

(4.23) which has a similar form as Eq 419 This alternative propagation method - фото 422

which has a similar form as Eq. (4.19). This alternative propagation method also allows one to manually control the importance of positive and negative evidence, by choosing different factors α and β .

Once a rule for relevance propagation has been selected, the overall relevance of each neuron in the lower layer is determined by summing up the relevances coming from all upper‐layer neurons in agreement with Eqs. (4.8)and (4.9):

(4.24) Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 423

Figure 43 Relevance propagation heat map relevance is presented by the - фото 424

Figure 4.3 Relevance propagation (heat map; relevance is presented by the intensity of the red color).

Source: Montavon et al. [92].

The relevance is backpropagated from one layer to another until it reaches the input pixels x (d), and where the relevances картинка 425provide the desired pixel‐wise decomposition of the decision f ( x ). A practical example of relevance propagation obtained by Deep Taylor decomposition is shown in Figure 4.3[92].

4.3 Rule Extraction from LSTM Networks

In this section, we consider long short term memory networks (LSTMs), which were discussed in Chapter 3, and described an approach for tracking the importance of a given input to the LSTM for a given output. By identifying consistently important patterns of words, we are able to distill state‐of‐the‐art LSTMs on sentiment analysis and question answering into a set of representative phrases. This representation is then quantitatively validated by using the extracted phrases to construct a simple rule‐based classifier that approximates the output of the LSTM.

Word importance scores in LSTMS: Here, we present a decomposition of the output of an LSTM into a product of factors, where each term in the product can be interpreted as the contribution of a particular word. Thus, we can assign importance scores to words according to their contribution to the LSTM’s prediction. We have introduced the basics of LSTM networks in the Chapter 3. Given a sequence of word embeddings x 1, x T∈ d, an LSTM processes one word at a time, keeping track of cell and state vectors ( c 1, h 1), ( c T, h T), which contain information in the sentence up to word i . h tand c tare computed as a function of x t, c t − 1using the updates given by Eq. (3.72)of Chapter 3, which we repeat here with slightly different notation:

(4.25) As initial values we define c 0 h 0 0 After processing the full sequence a - фото 426

As initial values, we define c 0= h 0= 0. After processing the full sequence, a probability distribution over C classes is specified by p , with

(4.26) where W iis the i th row of the matrix W Decomposing the output of an LSTM - фото 427

where W iis the i ‐th row of the matrix W .

Decomposing the output of an LSTM: We now decompose the numerator of p iin Eq. (4.26)into a product of factors and show that we can interpret those factors as the contribution of individual words to the predicted probability of class i . Define

(4.27) so that As tanh c j tanh c j 1 can be viewed as the update resulting - фото 428

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»

Представляем Вашему вниманию похожие книги на «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»

Обсуждение, отзывы о книге «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x