Savo G. Glisic - Artificial Intelligence and Quantum Computing for Advanced Wireless Networks

Здесь есть возможность читать онлайн «Savo G. Glisic - Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

ARTIFICIAL INTELLIGENCE AND QUANTUM COMPUTING FOR ADVANCED WIRELESS NETWORKS
A practical overview of the implementation of artificial intelligence and quantum computing technology in large-scale communication networks Artificial Intelligence and Quantum Computing for Advanced Wireless Networks
Artificial Intelligence and Quantum Computing for Advanced Wireless Networks

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

For all filters in a given layer, we will assume that the order M lis the same. The activation value representing the output of a neuron in a layer is given by the corresponding - фото 166representing the output of a neuron in a layer, is given by the corresponding vector of delayed activations written as Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 167. Again, at the edges we have Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 168and Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 169. Instead of Table 3.1, a complete set of definitions is summarized in Table 3.2. The form of the two tables demonstrates a high level of similarity.

3.2.2 Neural Network Unfolding

An interesting, more insightful, representation of the FIR network is derived by using a concept known as unfolding in time . The general strategy is to remove all time delays by expanding the network into a larger equivalent static structure.

Figure 35 Finite impulse response FIR neuron and neural network Table 32 - фото 170

Figure 3.5 Finite impulse response (FIR) neuron and neural network.

Table 3.2 Finite impulse response (FIR) multi‐layer network notation.

Weight connecting neuron i in layer l 1 to neuron j in layer l Bias - фото 171 Weight connecting neuron i in layer l − 1 to neuron j in layer l
Bias weight for neuron j in layer l Summing junction or neuron j in layer - фото 172 Bias weight for neuron j in layer l
Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 173 Summing junction or neuron j in layer l
Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 174 Activation value for neuron j in layer l
Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 175 Vector of delayed activation values
Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 176 i ‐th external input to network
Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 177 i ‐th output of network
Figure 36 Finite impulse response FIR network unfolding Example For the - фото 178

Figure 3.6 Finite impulse response (FIR) network unfolding.

Example

For the network shown in Figure 3.6, all connections are made by second‐order (three tap) FIRs. Although at first sight it looks as though we have only 10 connections in the network, in reality there are a total of 30 variable filter coefficients (not counting five bias weights). Starting at the output, each tap delay can be interpreted as a “virtual neuron,” whose input is delayed by the given number of time steps. A tap delay can be “removed” by replicating the previous layers of the network and delaying the input to the network as shown in Figure 3.6. The procedure is then carried on backward throughout each layer until all delays have been removed. The final unfolded structure is depicted in the bottom of Figure 3.6.

3.2.3 Adaptation

For supervised learning with input sequence x( k ), the difference between the desired output at time k and the actual output of the network is the error

(3.17) Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 179

The total squared error over the sequence is given by

(3.18) The objective of training is to determine the set of FIR filter coefficients - фото 180

The objective of training is to determine the set of FIR filter coefficients (weights) that minimizes the cost J subject to the constraint of the network topology. A gradient descent approach will be utilized again in which the weights are iteratively updated.

For instantaneous gradient descent , FIR filters may be updated at each time slot as

(3.19) Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 181

where Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 182is the instantaneous gradient estimate, and μ is the learning rate. However, deriving an expression for this parameter results in an overlapping of number of chain rules. A simple backpropagationlike formulation does not exist anymore.

Temporal backpropagation is an alternative approach that can be used to avoid the above problem. To discuss it, let us consider two alternative forms of the true gradient of the cost function:

(3.20) Note that only their sum over all k is equal Based on this new expansion - фото 183

Note that

only their sum over all k is equal Based on this new expansion each term in - фото 184

only their sum over all k is equal. Based on this new expansion, each term in the sum is used to form the following stochastic algorithm:

(3.21) For small learning rates the total accumulated weight change is approximately - фото 185

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»

Представляем Вашему вниманию похожие книги на «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»

Обсуждение, отзывы о книге «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x