Savo G. Glisic - Artificial Intelligence and Quantum Computing for Advanced Wireless Networks

Здесь есть возможность читать онлайн «Savo G. Glisic - Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

ARTIFICIAL INTELLIGENCE AND QUANTUM COMPUTING FOR ADVANCED WIRELESS NETWORKS
A practical overview of the implementation of artificial intelligence and quantum computing technology in large-scale communication networks Artificial Intelligence and Quantum Computing for Advanced Wireless Networks
Artificial Intelligence and Quantum Computing for Advanced Wireless Networks

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Multi‐layer neural networks: A neural network is built up by incorporating the basic neuron model into different configurations. One example is the Hopfield network, where the output of each neuron can have a connection to the input of all neurons in the network, including a self‐feedback connection. Another option is the multilayer feedforward network illustrated in Figure 3.2. Here, we have layers of neurons where the output of a neuron in a given layer is input to all the neurons in the next layer. We may also have sparse connections or direct connections that may bypass layers. In these networks, no feedback loops exist within the structure. These network are sometimes referred to as backpropagation networks .

Figure 31 From biological to mathematical simplified model of a neuron - фото 123

Figure 3.1 From biological to mathematical simplified model of a neuron.

Source: CS231n Convolutional Neural Networks for Visual Recognition [1].

Figure 32 Block diagram of feedforward network Notation A single neuron - фото 124

Figure 3.2 Block diagram of feedforward network.

Notation: A single neuron extracted from the l ‐th layer of an L ‐layer network is also depicted in Figure 3.2. Parameters картинка 125denote the weights on the links between neuron i in the previous layer and neuron j in layer l . The output of the j ‐th neuron in layer l is represented by the variable картинка 126. The outputs картинка 127in the last L ‐th layer represent the overall outputs of the network. Here, we use notation y ifor the outputs as картинка 128. Parameters x i, defined as inputs to the network, may be viewed as a 0‐th layer with notation картинка 129. These definitions are summarized in Table 3.1.

Table 3.1 Multi‐layer network notation.

картинка 130 Weight connecting neuron i in layer l − 1 to neuron j in layer l
Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 131 Bias weight for neuron j in layer l
Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 132 Summing junction for neuron j in layer l
Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 133 Activation (output) value for neuron j in layer l
картинка 134 i ‐th external input to network
картинка 135 i ‐th output to network

Define an input vector x = [ x 0, x 1, x 2, … x N] and output vector y = [ y 0, y 1, y 2, … y M]. The network maps, y = N ( w , x ), the input x to the outputs y using the weights w. Since fixed weights are used, this mapping is static ; there are no internal dynamics. Still, this network is a powerful tool for computation.

It has been shown that with two or more layers and a sufficient number of internal neurons, any uniformly continuous function can be represented with acceptable accuracy. The performance rests on the ways in which this “universal function approximator” is utilized.

3.1.2 Weights Optimization

The specific mapping with a network is obtained by an appropriate choice of weight values. Optimizing a set of weights is referred to as network training. An example of supervised learning scheme is shown in Figure 3.3. A training set of input vectors associated with the desired output vector, {(x 1, d 1), … (x P, d P)}, is provided. The difference between the desired output and the actual output of the network, for a given input sequence x, is defined as the error

(3.3) Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 136

The overall objective function to be minimized over the training set is the given squared error

(3.4) Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 137

The training should find the set of weights w that minimizes the cost J subject to the constraint of the network topology. We see that training a neural network represent a standard optimization problem.

A stochastic gradient descent (SGD) algorithm is an option as an optimization method. For each sample from the training set, the weights are adapted as

(3.5) Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 138

where Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 139is the error gradient for the current input pattern, and μ is the learning rate.

Backpropagation: This is a standard way to find картинка 140in Eq. (3.5). Here we provide a formal derivation.

Single neuron case – Consider first a single linear neuron, which we may describe compactly as

(3.6) where w w 0 w 1 w N and x 1 x 1 x N In this simple setup - фото 141

where w = [ w 0, w 1, … w N] and x = [1, x 1, … x N]. In this simple setup

Figure 33 Schematic representation of supervised learning 37 so that Δw - фото 142

Figure 3.3 Schematic representation of supervised learning.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»

Представляем Вашему вниманию похожие книги на «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»

Обсуждение, отзывы о книге «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x