Savo G. Glisic - Artificial Intelligence and Quantum Computing for Advanced Wireless Networks

Здесь есть возможность читать онлайн «Savo G. Glisic - Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

ARTIFICIAL INTELLIGENCE AND QUANTUM COMPUTING FOR ADVANCED WIRELESS NETWORKS
A practical overview of the implementation of artificial intelligence and quantum computing technology in large-scale communication networks Artificial Intelligence and Quantum Computing for Advanced Wireless Networks
Artificial Intelligence and Quantum Computing for Advanced Wireless Networks

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(3.7) so that Δw 2 μe x From this we have Δ w i 2 μex i which is the least mean - фото 143

so that Δw = 2 μe x. From this, we have Δ w i= 2 μex i, which is the least mean square (LMS) algorithm.

In a multi‐layer network , we just formally extend this procedure. For this we use the chain rule

(3.8) Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 144

with Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 145leading to the weight update Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 146.

Parameters δ are derived recursively starting from the output layer:

(3.9) where f is the derivative of the sigmoid function of s We have also used - фото 147

where fкартинка 148is the derivative of the sigmoid function of s . We have also used for the output layer With this at the output layer each neuron has an explicit desired response - фото 149. With this, at the output layer, each neuron has an explicit desired response, so we can write

(3.10) Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 150

Substituting into Eq. (3.9)yields Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 151.

To calculate the δs , we note that e Te is influenced through картинка 152indirectly through all node values in the next layer Referring to the upper part of Figure 33 we again employ - фото 153in the next layer. Referring to the upper part of Figure 3.3, we again employ the chain rule

(3.11) Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 154

with

(3.12) Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 155

Recalling that Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 156, we get Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 157In summary, we have

(3.13) Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 158

(3.14) For the bias weight we note that in Eq 313 The above processing i - фото 159

For the bias weight картинка 160we note that картинка 161in Eq. (3.13). The above processing is illustrated in Figure 3.4, indicating the symmetry between the forward propagation of neuron activation values and the backward propagation of δ terms.

Figure 34 Illustration of backpropagation 32 FIR Architecture 321 Spatial - фото 162

Figure 3.4 Illustration of backpropagation.

3.2 FIR Architecture

3.2.1 Spatial Temporal Representations

Most often in engineering, prior to becoming a member of the observation set, the input signals to the neural network have gone through some form of filtering. This also coincides with the form of potential maintained at the axon hillock region of the neural cell. With this in mind, we may modify Eq. (3.1)as

(3.15) By adding filtering operations we have included the equally important temporal - фото 163

By adding filtering operations, we have included the equally important temporal dimension in the static model. For our purposes, we will now be interested in adapting the filters. To this end, we assume a discrete FIR representation for each filter. This yields

(3.16) with k being the discrete time index for some sampling rate Δ t and w i n - фото 164

with k being the discrete time index for some sampling rate Δ t , and w i( n ) being the coefficients for the FIR filters. In the following, we will represent the vector w i= [ w i(0), w i(1), … , w i( M )] and the delayed states as x i( k ) = [ x i( k ), x i( k − 1), … , x i( kM )]. Now, a filter operation is written as the vector dot product w ix i( k ), with time implicitly included in the notation.

The top part of Figure 3.5shows a standard representation of an FIR filter as a tap delay line. Although this filter represents several biological processes, as well as many engineering solutions, for ease of reference to a real neuron network we will refer to an FIR filter as a synaptic filter or simply a synapse . The output of the neuron will be as before y ( k ) = f ( s ( k )) with f ( x ) = tanh ( x ), and we have added only a time index k .

We use the same approach to network modeling as in the previous section. Each link in the network is now created using an FIR filter (see Figure 3.5). The neural network no longer performs a simple static mapping from input to output; internal memory has now been added to simple static mapping from input to output. At the same time, since there are no feedback loops, the overall network is still FIR [2–5]. The notation now becomes For all filters in a given layer we will assume that the order M lis the - фото 165.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»

Представляем Вашему вниманию похожие книги на «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»

Обсуждение, отзывы о книге «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x