Savo G. Glisic - Artificial Intelligence and Quantum Computing for Advanced Wireless Networks

Здесь есть возможность читать онлайн «Savo G. Glisic - Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

ARTIFICIAL INTELLIGENCE AND QUANTUM COMPUTING FOR ADVANCED WIRELESS NETWORKS
A practical overview of the implementation of artificial intelligence and quantum computing technology in large-scale communication networks Artificial Intelligence and Quantum Computing for Advanced Wireless Networks
Artificial Intelligence and Quantum Computing for Advanced Wireless Networks

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(3.45) Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 232

where N Mis an FIR network with total memory length M .

3.3.1 Adaptation and Iterated Predictions

The basic predictor training configuration for the FIR network is shown in Figure 3.9with a known value of y ( k − 1) as the input, and the output Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 233as the single‐step estimate of the true series value y ( k ). During training, the squared error is minimized by using the temporal backpropagation algorithm to adapt the - фото 234is minimized by using the temporal backpropagation algorithm to adapt the network ( y ( k ) acts as the desired response). Training consists of finding a least‐squares solution. In a stochastic framework, the optimal neural network mapping is simply the conditional running mean

Figure 39 Network prediction configuration 346 where y k is viewed - фото 235

Figure 3.9 Network prediction configuration.

(3.46) where y k is viewed as a stationary ergodic process and the expectation is - фото 236

where y ( k ) is viewed as a stationary ergodic process‚ and the expectation is taken over the joint distribution of y ( k ) through y ( kM ). N *represents a closed‐form optimal solution that can only be approximated due to finite training data and constraints in the network topology.

Iterated predictions: Once the network is trained, iterated prediction is achieved by taking the estimate Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 237and feeding it back as input to the network:

(3.47) Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 238

as illustrated in Figure 3.9. Equation (3.47)can be now iterated forward in time to achieve predictions as far into the future as desired. Suppose, for example, that we were given only N points for some time series of interest. We would train the network on those N points. The single‐step estimate картинка 239, based on known values of the series, would then be fed back to produce the estimate картинка 240, and continued iterations would yield future predictions.

3.4 Recurrent Neural Networks

3.4.1 Filters as Predictors

Linear filters: As already indicated so far in this chapter, linear filters have been exploited for the structures of predictors. In general, there are two families of filters: those without feedback, whose output depends only upon current and past input values; and those with feedback, whose output depends upon both input values and past outputs. Such filters are best described by a constant coefficient difference equation, as

(3.48) where y k is the output e k is the input a i i 1 2 p are - фото 241

where y ( k ) is the output, e ( k ) is the input, a i, i = 1, 2, … , p , are the AR feedback coefficients and b j, j = 0, 1, … , q , are the moving average (MA) feedforward coefficients. Such a filter is termed an autoregressive moving average (ARMA ( p , q )) filter, where p is the order of the autoregressive, or feedback, part of the structure, and q is the order of the MA, or feedforward, element of the structure. Due to the feedback present within this filter, the impulse response – that is, the values of ( k ), k ≥ 0, when e ( k ) is a discrete time impulse – is infinite in duration, and therefore such a filter is referred to as an infinite impulse response (IIR) filter.

The general form of Eq. (3.48)is simplified by removing the feedback terms as

(3.49) Such a filter is called MA q and has an FIR that is identical to the - фото 242

Such a filter is called MA ( q ) and has an FIR that is identical to the parameters b j, j = 0, 1, … , q . In digital signal processing, therefore, such a filter is called an FIR filter. Similarly, Eq. (3.48)is simplified to yield an autoregressive (AR(p)) filter

(3.50) which is also an IIR filter The filter described by Eq 350is the basis for - фото 243

which is also an IIR filter. The filter described by Eq. (3.50)is the basis for modeling the speech generating process. The presence of feedback within the AR( p ) and ARMA ( p , q ) filters implies that selection of the a i, i = 1, 2, … , p , coefficients must be such that the filters are bounded input bounded output ( BIBO ) stable. The most straightforward way to test stability is to exploit the domain representation of the transfer function of the filter represented by - фото 244‐domain representation of the transfer function of the filter represented by (3.48):

(3.51) To guarantee stability the p roots of the denominator polynomial of z - фото 245

To guarantee stability, the p roots of the denominator polynomial of ( z ), that is, the values of z for which D ( z ) = 0, the poles of the transfer function, must lie within the unit circle in the z ‐plane, ∣ z ∣ < 1.

Nonlinear predictors: If a measurement is assumed to be generated by an ARMA ( p , q ) model, the optimal conditional mean predictor of the discrete time random signal { y ( k )}

(3.52) is given by 353 where the residuals ê - фото 246

is given by

(3.53) where the residuals ê j 1 2 q The feedback present within Eq - фото 247

where the residuals ê j 1 2 q The feedback present within Eq 353 which is due to the - фото 248 j = 1, 2, … , q . The feedback present within Eq. (3.53), which is due to the residuals ê ( kj ), results from the presence of the MA ( q ) part of the model for y ( k ) in Eq. (3.48). No information is available about e ( k ), and therefore it cannot form part of the prediction. On this basis, the simplest form of nonlinear autoregressive moving average (NARMA ( p , q )) model takes the form

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»

Представляем Вашему вниманию похожие книги на «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»

Обсуждение, отзывы о книге «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x