Neil McCartney - Properties for Design of Composite Structures

Здесь есть возможность читать онлайн «Neil McCartney - Properties for Design of Composite Structures» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Properties for Design of Composite Structures: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Properties for Design of Composite Structures»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

PROPERTIES FOR DESIGN OF COMPOSITE STRUCTURES
A comprehensive guide to analytical methods and source code to predict the behavior of undamaged and damaged composite materials Properties for Design of Composite Structures: Theory and Implementation Using Software
Properties for Design of Composite Structures: Theory and Implementation Using Software

Properties for Design of Composite Structures — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Properties for Design of Composite Structures», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The invariants of the strain tensors in terms of principal stretches are given by the relations

289 290 291 It is clear that - фото 90(2.89)

290 291 It is clear that 292 It w - фото 91(2.90)

291 It is clear that 292 It will be very useful to introduce here the - фото 92(2.91)

It is clear that

292 It will be very useful to introduce here the principal values CJ J - фото 93(2.92)

It will be very useful to introduce here the principal values CJ , J = 1, 2, 3, of Green’s deformation tensor defined using the following relations

Properties for Design of Composite Structures - изображение 94(2.93)

such that the symmetric tensor Cmay be written in the form

Properties for Design of Composite Structures - изображение 95(2.94)

The quantities νJ,J=1,2,3, are orthogonal unit vectors defining the directions of the principal values. They have the following properties

295 The polar decomposition principle see for example 2 Section 15 - фото 96(2.95)

The polar decomposition principle (see, for example, [2, Section 1.5]) states that the deformation gradient may be expressed in the following forms (dyadic and tensor)

296 where Ris the orthogonal rigid rotation tensor having the properties - фото 97(2.96)

where Ris the orthogonal rigid rotation tensor having the properties R.RT=RT.R=I with det​(R)=±1, and where Uand Vare positive-definite symmetric right and left stretch tensors.

It follows from ( 2.84) and ( 2.96) that in tensor form

297 so that in dyadic form 298 The symmetric tensors Uand Vhave common - фото 98(2.97)

so that in dyadic form

298 The symmetric tensors Uand Vhave common eigenvalues λJ but different - фото 99(2.98)

The symmetric tensors Uand Vhave common eigenvalues λJ but different mutually orthogonal eigenvectors νJ such that

Properties for Design of Composite Structures - изображение 100(2.99)

The eigenvalues λJ, J = 1, 2, 3, are the principal stretches and

Properties for Design of Composite Structures - изображение 101(2.100)

It then follows that the principal values CJ of the Cmay be written in terms of the principal stretches λJ as follows

Properties for Design of Composite Structures - изображение 102(2.101)

It follows from ( 2.94) that

2102 and on multiplying by νK using the properties 295 it can be shown - фото 103(2.102)

and on multiplying by νK using the properties ( 2.95) it can be shown that

2103 In terms of the principal values C 1 C 2and C 3of the tensor Cand E 1 - фото 104(2.103)

In terms of the principal values C 1, C 2and C 3of the tensor Cand E 1, E 2and E 3of the tensor E, the corresponding invariants may be written as (see [1, Section 1.10])

2104 It can be shown that 2105 where ρ0 is the uniform mass density - фото 105(2.104)

It can be shown that

2105 where ρ0 is the uniform mass density before deformation has occurred at - фото 106(2.105)

where ρ0 is the uniform mass density before deformation has occurred at some reference temperature T 0and reference pressure p0.

2.11 Field Equations for Infinitesimal Deformations

Continuum mechanics is based upon conservation laws that lead to the basic field equations that are independent of the properties of material to which the laws are applied. The mathematical statement of these laws is now given for the case of infinitesimal deformations where there is no practical distinction between the use of so-called material coordinates and spatial coordinates.

For many practical applications the deformation gradients are sufficiently small for quadratic terms to be neglected when compared with linear terms leading to an infinitesimal deformation theory. The expression ( 2.88) for the Lagrangian strain tensor may then be approximated by υ≅ε where

Properties for Design of Composite Structures - изображение 107(2.106)

is known as the infinitesimal strain tensor and where ∇ denotes the gradient with respect to the coordinates x. In addition, there is no need to distinguish between the initial and deformed states of the medium so that x≅x¯. Relation ( 2.106) may be written in component form so that

Properties for Design of Composite Structures - изображение 108(2.107)

which shows that the infinitesimal strain tensor ε is symmetric.

For a continuous medium having a uniform density distribution ρ0 in its undeformed state, the principle of conservation of mass for infinitesimal deformations is expressed as

Properties for Design of Composite Structures - изображение 109(2.108)

where ρ is the density of the medium during deformation. This equation simply states that the mass of a given set of material points remains constant during any deformation. The local density ρ of the medium measured relative to spatial coordinates will in fact vary because of non-uniform displacement gradients, but this change is negligible for infinitesimal deformation theory where the value of ρ corresponds to the initial density ρ0 prior to deformation, as asserted by ( 2.108).

For the equilibrium situations considered in this book, body forces are neglected so that b= 0 and the equation of motion ( 2.37) reduces in component form to

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Properties for Design of Composite Structures»

Представляем Вашему вниманию похожие книги на «Properties for Design of Composite Structures» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Properties for Design of Composite Structures»

Обсуждение, отзывы о книге «Properties for Design of Composite Structures» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x