Patrick Muldowney - Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics

Здесь есть возможность читать онлайн «Patrick Muldowney - Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A stand-alone introduction to specific integration problems in the probabilistic theory of stochastic calculus Picking up where his previous book,
, left off,
introduces readers to particular problems of integration in the probability-like theory of quantum mechanics. Written as a motivational explanation of the key points of the underlying mathematical theory, and including ample illustrations of the calculus, this book relies heavily on the mathematical theory set out in the author’s previous work. That said, this work stands alone and does not require a reading of
in order to be understandable.
Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics Stochastic calculus, including discussions of random variation, integration and probability, and stochastic processes. Field theory, including discussions of gauges for product spaces and quantum electrodynamics. Robust and thorough appendices, examples, illustrations, and introductions for each of the concepts discussed within. An introduction to basic gauge integral theory. The methods employed in this book show, for instance, that it is no longer necessary to resort to unreliable «Black Box» theory in financial calculus; that full mathematical rigor can now be combined with clarity and simplicity. Perfect for students and academics with even a passing interest in the application of the gauge integral technique pioneered by R. Henstock and J. Kurzweil,
is an illuminating and insightful exploration of the complex mathematical topics contained within.

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Table of Contents

1 Cover

2 Title Page Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics Patrick Muldowney

3 Copyright

4 Preface

5 Reading this BooknotesSet Note

6 Introduction Notes

7 Part I: Stochastic Calculus Chapter 1: Stochastic Integration Notes Chapter 2: Random Variation 2.1 What is Random Variation? 2.2 Probability and Riemann Sums 2.3 A Basic Stochastic Integral 2.4 Choosing a Sample Space 2.5 More on Basic Stochastic Integral Notes Chapter 3: Integration and Probability 3.1 ‐Complete Integration 3.2 Burkill‐complete Stochastic Integral 3.3 The Henstock Integral 3.4 Riemann Approach to Random Variation 3.5 Riemann Approach to Stochastic Integrals Notes Chapter 4: Stochastic Processes 4.1 From картинка 1to картинка 2 4.2 Sample Space with Uncountable 4.3 Stochastic Integrals for Example 12 4.4 Example 12 4.5 Review of Integrability Issues Notes Chapter 5: Brownian Motion5.1 Introduction to Brownian Motion 5.2 Brownian Motion Preliminaries 5.3 Review of Brownian Probability 5.4 Brownian Stochastic Integration 5.5 Some Features of Brownian Motion 5.6 Varieties of Stochastic Integral Notes Chapter 6: Stochastic Sums 6.1 Review of Random Variability 6.2 Riemann Sums for Stochastic Integrals 6.3 Stochastic Sum as Observable 6.4 Stochastic Sum as Random Variable 6.5 Introduction to 66 Isometry Preliminaries 67 Isometry Property for Stochastic Sums 68 Other - фото 3 6.6 Isometry Preliminaries 6.7 Isometry Property for Stochastic Sums 6.8 Other Stochastic Sums 6.9 Introduction to Itô’s Formula 6.10 Itô’s Formula for Stochastic Sums 6.11 Proof of Itô’s Formula 6.12 Stochastic Sums or Stochastic Integrals? Notes

8 Part II: Field Theory Chapter 7: Gauges for Product Spaces7.1 Introduction 7.2 Three‐dimensional Brownian Motion 7.3 A Structured Cartesian Product Space 7.4 Gauges for Product Spaces 7.5 Gauges for Infinite‐dimensional Spaces 7.6 Higher‐dimensional Brownian Motion 7.7 Infinite Products of Infinite Products Notes Chapter 8: Quantum Field Theory 8.1 Overview of Feynman Integrals 8.2 Path Integral for Particle Motion 8.3 Action Waves 8.4 Interpretation of Action Waves 8.5 Calculus of Variations 8.6 Integration Issues 8.7 Numerical Estimate of Path Integral 8.8 Free Particle in Three Dimensions 8.9 From Particle to Field 8.10 Simple Harmonic Oscillator 8.11 A Finite Number of Particles 8.12 Continuous Mass Field Notes Chapter 9: Quantum Electrodynamics 9.1 Electromagnetic Field Interaction 9.2 Constructing the Field Interaction Integral 9.3 ‐Complete Integral Over Histories 9.4 Review of Point‐Cell Structure 9.5 Calculating Integral Over Histories 9.6 Integration of a Step Function 9.7 Regular Partition Calculation 9.8 Integrand for Integral over Histories 9.9 Action Wave Amplitudes 9.10 Probability and Wave Functions Notes

9 Part III: Appendices Chapter 10: Appendix 1: Integration 10.1 Monstrous Functions 10.2 A Non‐monstrous Function 10.3 Riemann‐complete Integration 10.4 Convergence Criteria 10.5 “I would not care to fly in that plane” Notes Chapter 11: Appendix 2: Theorem 63 11.1 Fresnel's Integral 11.2 Theorem 188 of [MTRV] 11.3 Some Consequences of Theorem 63 Fallacy Notes Chapter 12: Appendix 3: Option Pricing 12.1 American Options 12.2 Asian Options Notes Chapter 13: Appendix 4: Listings13.1 Theorems 13.2 Examples 13.3 Definitions 13.4 Symbols

10 Bibliography

11 Index

12 End User License Agreement

List of Tables

1 Chapter 2 Table 2.1 Distribution of payouts. Table 2.2 Relative frequency table of distribution of weights. Table 2.3 Calculation of mean and standard deviation. Table 2.4 UD sample paths for processes Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 4 Table 2.5 Calculations for two UD sample paths for processes Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 5

2 Chapter 8Table 8.1 List of four cells forming a regular partition Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 6of Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 7.Table 8.2 List of representative co‐ordinates for step function calculation.

3 Chapter 9Table 9.1 Elements of calculation of Riemann sum over a regular partition.

4 Chapter 12Table 12.1 Glanbia share prices, 3 August 1991 to 3 September 2011.

List of Illustrations

1 Chapter 10Figure 10.1 картинка 8Figure 10.2 картинка 9Figure 10.3 картинка 10Figure 10.4 картинка 11

2 Chapter 12Figure 12.1 картинка 12Figure 12.2 картинка 13Figure 12.3 картинка 14, картинка 15, картинка 16Figure 12.4 картинка 17Figure 12.5 картинка 18Figure 12.6 картинка 19, картинка 20, картинка 21Figure 12.7 moving averages.Figure 12.8 Exponential regressionFigure 12.9 All moving SD'sFigure 12.10 Option values

Guide

1 Cover

2 Table of Contents

3 Begin Reading

Pages

1 iii

2 iv

3 11

4 12

5 13

6 14

7 15

8 16

9 17

10 18

11 19

12 20

13 21

14 23

15 25

16 26

17 27

18 28

19 29

20 30

21 31

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»

Представляем Вашему вниманию похожие книги на «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»

Обсуждение, отзывы о книге «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x