Patrick Muldowney - Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics
Здесь есть возможность читать онлайн «Patrick Muldowney - Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:3 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
, left off,
introduces readers to particular problems of integration in the probability-like theory of quantum mechanics. Written as a motivational explanation of the key points of the underlying mathematical theory, and including ample illustrations of the calculus, this book relies heavily on the mathematical theory set out in the author’s previous work. That said, this work stands alone and does not require a reading of
in order to be understandable.
Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics Stochastic calculus, including discussions of random variation, integration and probability, and stochastic processes. Field theory, including discussions of gauges for product spaces and quantum electrodynamics. Robust and thorough appendices, examples, illustrations, and introductions for each of the concepts discussed within. An introduction to basic gauge integral theory. The methods employed in this book show, for instance, that it is no longer necessary to resort to unreliable «Black Box» theory in financial calculus; that full mathematical rigor can now be combined with clarity and simplicity. Perfect for students and academics with even a passing interest in the application of the gauge integral technique pioneered by R. Henstock and J. Kurzweil,
is an illuminating and insightful exploration of the complex mathematical topics contained within.
to
4.2 Sample Space with Uncountable 4.3 Stochastic Integrals for Example 12 4.4 Example 12 4.5 Review of Integrability Issues Notes Chapter 5: Brownian Motion5.1 Introduction to Brownian Motion 5.2 Brownian Motion Preliminaries 5.3 Review of Brownian Probability 5.4 Brownian Stochastic Integration 5.5 Some Features of Brownian Motion 5.6 Varieties of Stochastic Integral Notes Chapter 6: Stochastic Sums 6.1 Review of Random Variability 6.2 Riemann Sums for Stochastic Integrals 6.3 Stochastic Sum as Observable 6.4 Stochastic Sum as Random Variable 6.5 Introduction to
6.6 Isometry Preliminaries 6.7 Isometry Property for Stochastic Sums 6.8 Other Stochastic Sums 6.9 Introduction to Itô’s Formula 6.10 Itô’s Formula for Stochastic Sums 6.11 Proof of Itô’s Formula 6.12 Stochastic Sums or Stochastic Integrals? Notes
Table 2.5 Calculations for two UD sample paths for processes 
of
.Table 8.2 List of representative co‐ordinates for step function calculation.
Figure 10.2
Figure 10.3
Figure 10.4 
Figure 12.2
Figure 12.3
,
,
Figure 12.4
Figure 12.5
Figure 12.6
,
,
Figure 12.7 moving averages.Figure 12.8 Exponential regressionFigure 12.9 All moving SD'sFigure 12.10 Option values