Петр Путенихин - Правила счета элементов бесконечного множества

Здесь есть возможность читать онлайн «Петр Путенихин - Правила счета элементов бесконечного множества» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2021, Издательство: Array SelfPub.ru, Жанр: sci_theories, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Правила счета элементов бесконечного множества: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Правила счета элементов бесконечного множества»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Вскрыты ошибки Кантора и его последователей в логических рассуждениях о бесконечных множествах. Приведено доказательство счетности континуума, счетности всех действительных чисел. Показана ошибочность рассуждений в задаче об "Отеле Гильберта". The mistakes of Cantor and his followers in logical reasoning about infinite sets are revealed. The proof of the countability of the continuum, the countability of all real numbers is given. The erroneousness of reasoning in the problem of "Hilbert's Hotel" is shown.

Правила счета элементов бесконечного множества — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Правила счета элементов бесконечного множества», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Подставляем условно известное значение угла f Раскрываем скобки Подставляем - фото 65

Подставляем условно известное значение угла f:

Раскрываем скобки Подставляем значение заданного угла а Упрощаем выражение - фото 66

Раскрываем скобки

Подставляем значение заданного угла а Упрощаем выражение Что и требовалось - фото 67

Подставляем значение заданного угла а

Упрощаем выражение Что и требовалось доказать Согласно этой теореме на рис3 - фото 68

Упрощаем выражение

Что и требовалось доказать Согласно этой теореме на рис3 длина дуги - фото 69

Что и требовалось доказать.

Согласно этой теореме, на рис.3 длина дуги окружности в пределах угла α равна 2αR, поскольку угловая величина дуги равна 2α. Длину линии проекции a в основании проекционного угла найдем как разницу сторон двух прямоугольных треугольников:

Отсюда находим величину а Как и выше найдем отношение длины отсекаемой на - фото 70

Отсюда находим величину а :

Как и выше найдем отношение длины отсекаемой на окружности дуги к длине этого - фото 71

Как и выше, найдем отношение длины отсекаемой на окружности дуги к длине этого отрезка:

Найдем предел этой величины когда каждый из углов стремится к нулю В этом - фото 72

Найдем предел этой величины, когда каждый из углов стремится к нулю. В этом случае обе проекционные линии сблизятся до слияния, а их средняя линия будет стремиться к горизонтальному положению:

В общем случае мы получаем неопределенность поскольку к нулю стремятся и - фото 73

В общем случае мы получаем неопределенность, поскольку к нулю стремятся и числитель и знаменатель. Поэтому мы поступим следующим образом. Найдем эти пределы для нескольких конкретных значений среднего проекционного угла φ. В этом случае неопределенность не устраняется, но мы табличным методом построим соответствующие графики, которые визуально продемонстрируют наличие конечных пределов. Табличные значения сходятся удовлетворительно быстро, поэтому в пределах точности приложения Excel были получены следующие значения пределов для произвольно взятых значений угла φ:

Как видим пределы существуют для любого значения проецирующей линии угла - фото 74

Как видим, пределы существуют для любого значения проецирующей линии, угла проецирования. Поскольку вычисление предела функции неочевидно, приведём геометрический способ его вычисления для частного значения угла, рассмотренного на рис.3, значение которого определяется из геометрических соображений и равно 45 о. Увеличим до бесконечности масштаб фрагмента рисунка в точке пересечения проецирующей прямой и окружности:

Рис5 Увеличенный фрагмент рисунка 3 На рисунке угол φ 45 о а угол α0 Как - фото 75

Рис.5. Увеличенный фрагмент рисунка 3

На рисунке угол φ =45 о, а угол α→0. Как видим на рисунке, фрагмент проецируемой окружности выглядит вертикальной прямой, а две проецирующие прямые – параллельны. Следовательно, отрезки b – на окружности и параллельный проецирующей плоскости оказываются перпендикулярными и образуют равносторонний прямоугольный треугольник. Отсюда и следует значение предела lim = 0,5 в третьей строке таблицы пределов и в выражении (9). Очевидно, что геометрическое вычисление предела несложно сделать и для других углов проецирующего луча. Напротив, определить это значение аналитически, вычислением предела выражения:

довольно сложно Подставим значение угла φ Как видим под знаком предела - фото 76

довольно сложно. Подставим значение угла φ

Как видим под знаком предела находится разность двух бесконечно больших - фото 77

Как видим, под знаком предела находится разность двух бесконечно больших величин, причем это не просто равномощные бесконечности, они тождественны. Действительно, в пределе α→0 мы имеем:

Что и можно записать как тождество Это довольно интересное обстоятельство две - фото 78

Что и можно записать как тождество

Это довольно интересное обстоятельство две бесконечности равны однако тем не - фото 79

Это довольно интересное обстоятельство: две бесконечности равны, однако, тем не менее, дают разность 2. В общем-то, это свойство не уникально. Его легко показать на другом примере: n +2 = n, если n→∞. Здесь также две равные бесконечности, но при вычитании одной из другой мы получаем конечное число. Значение предела (10) нам известно, он равен 2, то есть при α→0 мы имеем

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Правила счета элементов бесконечного множества»

Представляем Вашему вниманию похожие книги на «Правила счета элементов бесконечного множества» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Правила счета элементов бесконечного множества»

Обсуждение, отзывы о книге «Правила счета элементов бесконечного множества» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x