"…например, 0,500000… и 0,49999999…– это одно и то же число. Для определенности будем пользоваться записью с нулями" [3, с.73].
В частности, вопрос: отождествляются только такие числа? А, например, числа 0,550000… и 0,549999… не отождествляются по такому же принципу? Это правило, собственно говоря, не выдумка. Например, его использует офисная программа MS Excel, правда, с противоположной "определенностью". Там любое целое число в одном из представлений так и записывается: с множеством девяток в конце. Но в нашем случае мы рассматриваем числа в их абсолютном смысле. Поэтому число 0,5000…1 и число 0,5, число 0,4999999… или даже 0,4999…9998 – это совершенно разные числа. Если же вводить указанное правило (округление), то следовало бы и здесь дать веские обоснования, почему такой участи избежали числа 0,549999… или 0,22229999..... Чем они кардинально отличаются? Если же правило распространить и на них, то сразу же образуется счетная бесконечность чисел, отброшенных в результате безосновательного округления.
Итак, после тривиального преобразования координат точки квадрата в мнемоническую запись, с ними производится манипуляция, которая также не имеет веско аргументированного, рационального смысла. Перетасовыванием знаков двух чисел формируется новое число:
Обратим внимание на следующее интересное замечание и на приведенный далее способ отождествления:
"для простоты мы не берем точки квадрата, лежащие на его сторонах, а берем лишь внутренние точки… Нам надо теперь найти точку Q отрезка АВ, соответствующего точке Т" [3, с.78].
Для "простоты" – это, прямо скажем, – лукавство. Этим упрощением отбрасывается неразрешимое противоречие совпадения линии и стороны квадрата.
Точка T – это точка в квадрате с указанными координатами x и y . Координата точки отрезка выбирается по принципу Q = z . Далее делается ожидаемый вывод: точке T квадрата поставлена в соответствие точка Q отрезка [0, 1]. Следовательно, всем различным точкам квадрата соответствуют разные точки отрезка и тем самым установлено взаимно однозначное соответствие между точками квадрата и точками отрезка. Из этого также делается вывод, что множество точек квадрата имеет такую же мощность (количество), что и множество точек отрезка (их количество).
Такие выводы противоречат не только здравому смыслу, но и логике, поскольку налицо подмена понятий. Сначала обратим внимание на то, что же отождествляется. А отождествляется координата точки отрезка и некоторое комбинационное число , которое вообще-то координатой не является. Действительно, координатой чего мы можем признать сборку – число z ? Какое отношение эта комбинация знаков имеет к координатам x , y точки квадрата? Координаты – это два числа (так сказать, две штуки), а z – это одно число (одна штука). По существу, число z является для координат x , y своеобразным индексом . Иными словами, мы здесь отождествили не две точки, а точку и некий индекс . Но индекс чего? Квадрат – это плоская фигура, следовательно, каждая его часть изначально должна рассматриваться как такая же плоская фигура, фигура с площадью. И мы фактически отождествили не две точки, а точку и площадку , бесконечно малый квадрат. Размеры точек на линии и точек, площадок на квадрате разные, хотя и те и те бесконечно малы.
Конечно, для отождествления это не является противоречием. Мы можем, например, отождествить 10 яблок и 10 уток. Или 200 кресел в кинотеатре и 200 зрителей. Но при этом следует помнить, что равны не они сами по себе, а их количества. В доказательстве Кантора, вроде бы, так и говорится, что равны мощности, равны количества. Однако преподносится это так, что создается впечатление, будто эти сравниваемые множества равны не только по своим количествам, мощности, но и равны буквально – точка на линии тождественно равна точке на квадрате. При таком подходе можно отождествить любые бесконечности, просто отбросив их качество и оставив лишь безликое количество. Все зависит только от искусства отождествителя. Приведём простой пример.
Точки любой линии на плоскости характеризуются двумя координатами. Точно так же и в рассмотренном примере все точки линии имеют две координаты, одна из которых просто равна нулю. Теперь становится ясным, почему мы обратили внимание на замечание " для простоты мы не берем ". На самом деле в таком упрощении преследовалась цель упростить организацию подмены понятий. Ведь если у линии признать наличие имеющейся на самом деле второй координаты, то и для неё пришлось бы также формировать комбинированное число – индекс. Действительно, если вернуть в рассмотрение и стороны квадрата, то одна из них совпадет с отождествляемой линией. В этом случае надо было бы веско обосновать , почему координаты нижней стороны квадрата преобразуются в число z , а линия, полностью совпадающая с этой стороной, по-прежнему описывается одной координатой, хотя у неё однозначно имеется и вторая, нулевая?
Читать дальше