Петр Путенихин - Векторные свойства гравитационного потенциала

Здесь есть возможность читать онлайн «Петр Путенихин - Векторные свойства гравитационного потенциала» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2021, Жанр: Детская образовательная литература, Физика, Математика, Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Векторные свойства гравитационного потенциала: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Векторные свойства гравитационного потенциала»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Приведено доказательство векторной природы гравитационного потенциала, согласно которой гравитационный потенциал в любой точке бесконечной Вселенной равен нулю. Напротив, согласно скалярным представлениям о гравитационном потенциале, в стационарной Вселенной гравитационный потенциал равен бесконечности, причём в любой точке пространства. Однако этот потенциал входит в уравнение всемирного тяготения, имеющего явно векторный характер. Закон неявно содержит в себе не только ускорение свободного падения, векторную величину, но и формирующий его гравитационный потенциал, который автоматически получает статус вектора.

Векторные свойства гравитационного потенциала — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Векторные свойства гравитационного потенциала», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Петр Путенихин

Векторные свойства гравитационного потенциала

Гравитационный потенциал

Гравитационные взаимодействия характеризуются двумя основными понятиями – силой гравитационного притяжения и гравитационным потенциалом. Хотя очевидно , что сила гравитационного притяжения является вектором, уравнение закона всемирного тяготения, тем не менее, записывают в виде скаляра. В связи с этим отметим одно интересное наше наблюдение. Если какая-то величина может иметь отрицательное значение, то такую величину определённо можно считать вектором. В частности, закон всемирного тяготения иногда пишут со знаком минус

Векторные свойства гравитационного потенциала - изображение 1

При этом нередко уточняется, что знак минус означает притяжение. Логически это легко объяснимо. Если масса находится в начале координат, то все положительные векторы направлены "наружу", от этого начала. Но сила притяжения направлена извне в сторону тела, в сторону начала координат. То есть, её можно рассматривать как отрицательный скаляр, так и как вектор, направленный в сторону начала координат. Но если эта величина, сила является вектором по указанной выше минусовой причине, записать это можно в следующей векторной форме

Векторные свойства гравитационного потенциала - изображение 2

Знак минуса отбрасываем, поскольку направление силы теперь определяется вектором. Поскольку в записи под знаком вектора имеются константы, их можно вынести

Запись как видим приобрела более явный векторный вид Однако в знаменателе - фото 3

Запись, как видим, приобрела более явный векторный вид. Однако в знаменателе присутствует квадрат вектора или, по меньшей мере, произведение вектора на самого себя

Известны два произведения векторов векторное и скалярное В нашем случае - фото 4

Известны два произведения векторов: векторное и скалярное. В нашем случае скалярное произведение неприменимо, поскольку его результат – скаляр, то есть, уравнение перестаёт быть векторным. Но и векторное произведение нас не устраивает, поскольку в этом случае направление вектора уже не совпадает с направлением силы. Выход только один: один из одинаковых сомножителей в знаменателе должен потерять статус вектора

На первый взгляд это ничем не обоснованный произвол в записи уравнения В - фото 5

На первый взгляд, это ничем не обоснованный произвол в записи уравнения. В сущности, величиной вектора мы можем считать и квадрат скаляра. Но пока рассмотрим другой вариант, ведущий к интересным выводам. Перепишем уравнение ещё раз с учетом разделения сомножителей

1 Замечаем что левый сомножитель в последнем равенстве выглядит как - фото 6

(1)

Замечаем, что левый сомножитель в последнем равенстве выглядит как традиционный гравитационный потенциал тела M, но записанный в векторной форме. Насколько это оправдано? Почему не обозначить вектором второй, правый сомножитель, а первый оставить в прежней, не векторной форме? Конечно, это возможно и до данного момента используется повсеместно, но в этом случае векторная форма второго сомножителя приобретает весьма неясную форму. А вот векторная форма гравитационного потенциала приобретает весьма осмысленный вид с далеко идущими последствиями.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Векторные свойства гравитационного потенциала»

Представляем Вашему вниманию похожие книги на «Векторные свойства гравитационного потенциала» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Векторные свойства гравитационного потенциала»

Обсуждение, отзывы о книге «Векторные свойства гравитационного потенциала» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x