Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы

Здесь есть возможность читать онлайн «Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2003, ISBN: 2003, Издательство: «ОНИКС 21 век» «Мир и Образование», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Сборник задач по математике с решениями для поступающих в вузы: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Сборник задач по математике с решениями для поступающих в вузы»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.
Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.
Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.

Сборник задач по математике с решениями для поступающих в вузы — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Сборник задач по математике с решениями для поступающих в вузы», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Например, применение неабсолютного тождества [5] Под применением тождества мы понимаем замену его левой части на правую.

log x + log у = log xy

приводит к следствию, в то время как применение этого же тождества справа налево

log xy = log x + log у

может повлечь за собой потерю решений. В первом случае в результате замены log x + log у на log xy мы можем приобрести решения, лежащие в области x < 0, у < 0. Во втором случае решения из той же самой области могут быть потеряны.

При решении большинства уравнений угроза приобретения посторонних корней не должна нас пугать, так как в наших руках есть такое надежное средство, как проверка. Гораздо более опасной является перспектива потери корней.

Избежать потери корней можно, если вместо неабсолютных тождеств, сужающих область определения, пользоваться неабсолютными тождествами, расширяющими область определения уравнения.

Вернемся к рассмотренному только что примеру с суммой логарифмов. Когда при решении уравнения приходится потенцировать, то неабсолютное тождество

log x + log у = log

не приводит к потере корней. Если же по ходу преобразований возникла необходимость прологарифмировать произведение, то нужно воспользоваться другим неабсолютным тождеством

log = log | x | + log | у |,

применение которого может лишь расширить область определения уравнения.

Есть второй прием, позволяющий избежать потери решений, который мы поясним на примере уравнения: sin 2 x + 7 cos 2 x + 7 = 0. Воспользуемся формулами, позволяющими выразить sin 2 x и cos 2 x через tg x . Получим

Приведя к общему знаменателю и отбросив знаменатель который всегда отличен от - фото 68

Приведя к общему знаменателю и отбросив знаменатель, который всегда отличен от нуля, получим простое уравнение

tg x = −7,

откуда x = −arctg 7 + π k , где k — любое целое число.

Хотя все произведенные преобразования кажутся «законными», мы легко убедимся в том, что целая серия корней x = π/ 2+ k π потеряна. Достаточно подставить эти значения неизвестного в исходное уравнение.

Корни были потеряны в результате применения неабсолютных тождеств

левые части которых существуют всегда а правые теряют смысл именно при x π - фото 69

левые части которых существуют всегда, а правые теряют смысл

именно при x = π/ 2+ k π.

Если по каким-то причинам мы не могли избежать применения неабсолютных тождеств, грозящих потерей корней, то нам не остается ничего иного, как проверить те значения неизвестного, которые оказались исключенными из области определения входящих в уравнение выражений. В нашем примере, как и в большинстве тригонометрических уравнений, это нетрудно сделать.

Наконец, отметим такой важный момент при решении уравнений, как правильное использование условий.

Уравнение

lg (1 + x ) + 3 lg (1 − x ) = lg (1 − x ²) − 2

удобнее всего решать, преобразовав lg (1 − x ²) в сумму логарифмов. Чтобы оградить себя от возможной потери корней, мы должны написать

lg (1 − x ²) = lg |1 + x | + lg |1 − x |.

Однако подобная осторожность в этом примере является излишней. Поскольку в уравнение наряду с выражением lg (1 − x ²) входят lg (1 + x ) и lg (1 − x ), то 1 + x и 1 − x должны быть положительными, чтобы левая часть уравнения имела смысл. Поэтому вместо lg |1 + x | и lg |1 − x | можно написать lg (1 + x ) и lg (1 − x ). Таким образом, данное уравнение принимает вид

lg (1 + x ) + 3 lg (1 − x ) = lg (1 + x ) + lg (1 − x ) − 2.

Приведя подобные члены, получим

2 lg (1 − x ) = −2,

откуда x = 0,9 — единственный корень данного уравнения.

На этом примере мы видим, что правильное использование условия позволяет быстрее достичь цели, чем в случае чисто формальных преобразований.

Однако достаточно ли обоснованным было приведенное выше решение? Чтобы убедиться в этом, решите самостоятельно такое уравнение

lg (1 + x ) + 3 lg (1 − x ) = lg (1 − x ²) + 2.

Оно отличается от предыдущего лишь знаком последнего члена. Поэтому, повторив все приведенные только что рассуждения, получим

2 lg (1 − x )= 2,

откуда x = −9. Подставив это значение x в исходное уравнение, убеждаемся в том, что нами найден посторонний корень. Произошло это потому, что уравнения

lg (1 + x ) + 3 lg (1 − x ) = lg (1 + x ) + lg (1 − x ) + 2

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Сборник задач по математике с решениями для поступающих в вузы»

Представляем Вашему вниманию похожие книги на «Сборник задач по математике с решениями для поступающих в вузы» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Сборник задач по математике с решениями для поступающих в вузы»

Обсуждение, отзывы о книге «Сборник задач по математике с решениями для поступающих в вузы» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x