Ричард Фейнман - 6a. Электродинамика

Здесь есть возможность читать онлайн «Ричард Фейнман - 6a. Электродинамика» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

6a. Электродинамика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «6a. Электродинамика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

6a. Электродинамика — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «6a. Электродинамика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(23.1)

Вообще-то и z и e могут как-то очень сложно за­висеть от частоты w. Однако соотношение (23.1) — это то соотношение, которое получилось бы, если бы за клеммами находился просто генера­тор e(w), последовательно соединенный с им­педансом z(w).

Можно поставить и обратный вопрос: имеет­ся какое-то электромагнитное устройство с двумя полюсами (выводами) и нам известна связь между I и V, т. е. известны e и z как функции частоты; можно ли всегда найти такую комбинацию идеальных элементов, которая даст эквивалентный внутренний импеданс z? Ответ на это таков: для любой разумной, т. е. физи­чески осмысленной функции z(w), действительно возможно построить с любой степенью точности модель с помощью контура, составленного из конечного числа идеальных элементов. Мы не собираемся изучать общую задачу, а только посмотрим, основываясь на физических соображениях, чего можно ожидать в отдельных случаях.

Фиг 231 Эквивалентная схема реального сопротивления Известно что ток - фото 81

Фиг. 23.1. Эквивалентная схема реального сопротивления.

Известно, что ток, протекающий через реальное сопротивле­ние, создает магнитное поле. Значит, каждое реальное сопротив­ление должно обладать и некоторой индуктивностью. Далее, если к сопротивлению приложена некоторая разность потенциа­лов, то на его концах должны возникнуть заряды, создающие нужные электрические поля. При изменении напряжения про­порционально меняется и заряд, так что у сопротивления имеет­ся и какая-то емкость. Следует ожидать, что эквивалентная схе­ма реального сопротивления должна иметь такой вид, как на фиг. 23.1. Если сопротивление хорошее, то его так называемые «паразитические элементы» L и С малы, так что при тех часто­тах, для которых оно предназначено, wL много меньше R, а l/wC — много больше R. Поэтому «паразитическими» элемен­тами можно пренебречь. Когда же частота повышается, то не исключено, что значение этих элементов возрастет и сопротив­ление станет похожим на резонансный контур.

Реальная индуктивность также не совпадает с идеальной, импеданс которой равен iw L. У реальной проволочной катушки бывает какое-то сопротивление, и при низких частотах она фак­тически эквивалентна индуктивности, последовательно соеди­ненной с сопротивлением (фиг. 23.2,а). Вы можете подумать, что в реальной катушке сопротивление и индуктивность объединены, что сопротивление распределено вдоль всего провода и перемешано с его индуктивностью.

Фиг 232 Эквивалентная схема реальной индуктивности на малых частотах - фото 82

Фиг. 23.2. Эквивалентная схема реальной индуктивности на ма­лых частотах.

Фиг 233 Эквивалентная схема реальной индуктивности на больших частотах - фото 83

Фиг. 23.3. Эквивалентная схема реальной индуктивности на больших частотах.

Может быть, надо пользоваться контуром, смахиваю­щим скорее на фиг. 23.2,6, где по­следовательно расставлено несколько маленьких R и L? Однако общий

импеданс такого контура просто равен SR+SiwL, а это то же самое, что дает более простая диаграмма, изображенная на фиг. 23.2, а.

Когда же частота повышается, то уже нельзя представлять реальную катушку в виде индуктивности плюс сопротивление. Начинают играть роль заряды, которые возникают на проводах, чтобы создать напряжение. Дело выглядит так, как будто меж­ду витками провода нанизаны маленькие конденсаторчики (фиг. 23.3, а). Можно попробовать приближенно представить реальную катушку в виде схемы фиг. 23.3, б. На низких ча­стотах эту схему очень хорошо имитирует более простая (фиг. 23.3, в); это опять тот же резонансный контур, который давал нам высокочастотную модель сопротивления. Однако для бо­лее высоких частот более сложный контур фиг. 23.3, б подходит лучше. Так что чем точнее вы хотите представить истинный импеданс реальной физической индуктивности, тем больше надо взять идеальных элементов для построения искусственной мо­дели.

Посмотрим теперь повнимательнее на то, что происходит в реальной катушке. Импеданс индуктивности изменяется как w L, значит, он на низких частотах обращается в нуль — «замы­кается накоротко», и мы замечаем только сопротивление прово­да. Если частота начинает расти, то wL вскоре становится боль­ше R и катушка выглядит почти как идеальная индуктивность. А если подняться по частоте еще выше, то начнут играть роль и емкости. Их импеданс пропорционален 1/wС; он велик на низких частотах. На достаточно низких частотах конденсатор выглядит как «разрыв в цепи», и если его с чем-нибудь запараллелить, то ток через него не пойдет. Но на высоких частотах ток предпочитает течь через емкости между витками, а не через индуктив­ность. Оттого-то ток в катушке прыгает с одного витка на дру­гой, вовсе не помышляя крутить петлю за петлей там, где ему приходится преодолевать э. д. с. Хоть нам, может быть, и хоте­лось бы, чтобы ток шел по виткам катушки, но сам-то он выби­рает путь полегче, переходя на дорогу наименьшего импеданса. Если это было бы нужно, то такой эффект можно было бы назвать «высокочастотным барьером» или чем-нибудь в этом роде. Похожие вещи происходят и в других науках. В аэродина­мике, скажем, если вы захотите заставить что-то двигаться бы­стрее звука, а движение рассчитано на малые скорости, то у вас ничего не выйдет. Это не значит, что возник какой-то непрохо­димый «барьер»; просто надо изменить конструкцию. Точно так же наша катушка, которую первоначально сконструировали как «индуктивность», на очень высоких частотах работает не как индуктивность, а как что-то другое. Для больших частот надо изобретать уже новое устройство.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «6a. Электродинамика»

Представляем Вашему вниманию похожие книги на «6a. Электродинамика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «6a. Электродинамика»

Обсуждение, отзывы о книге «6a. Электродинамика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x