
Как и раньше, нельзя исключить добавочные фазовые множители; на самом деле может оказаться, что

где b и g еще подлежат определению.
А что можно сказать о повороте вокруг оси у на угол 360° Мы уже знаем ответ для поворота на 360° вокруг оси z: амплитуда пребывания в любом состоянии меняет знак. Повороты на 360° вокруг любой оси всегда приводят прибор в прежнее положение. Таким образом, результат любого поворота на 360° должен быть таким же, как и при повороте на 360° вокруг оси z,—все амплитуды должны просто переменить знак. Теперь представим себе два последовательных поворота на 180° вокруг оси у по формуле (4.20); после них должен получиться результат (4.18). Иными словами,

Это означает, что

Следовательно, g =- b +p, и преобразование для поворота на 180° вокруг оси у может быть записано так:

Рассуждения, которыми мы только что пользовались, в равной степени применимы к поворотам на 180° вокруг любой оси в плоскости ху, хотя, конечно, повороты вокруг разных осей дадут для b разные числа. Но это единственное, чем они могут отличаться. В числе b имеется известный произвол, но, как только оно определено для какой-то одной оси в плоскости ху, оно определяется и для всех прочих осей. Принято выбирать b=0 для поворотов на 180° вокруг оси у.
Чтобы показать, что свобода такого выбора у нас есть, предположим, что мы решили, что b не равно нулю для поворота вокруг оси y ; тогда можно показать, что в плоскости ху существует какая-то другая ось, для которой соответствующая фаза будет нулем. Найдем фазовый множитель b Aдля оси А, образующей с осью у угол a, как показано на фиг. 4.7, а.

Фиг. 4.7. Поворот на 180° вокруг оси А (а) эквивалентен повороту на 180° вокруг оси у (б), за которым следует поворот вокруг оси z ' (в).
(Для удобства на рисунке угол а отрицателен, но это неважно.) Если теперь мы возьмем прибор Т, первоначально направленный гак же, как и S , а потом повернем его вокруг оси А на 180°, то его оси — назовем их х", у", z " — расположатся так, как на фиг. 4,7, а. Амплитуды по отношению к Т тогда станут

Но той же самой ориентации можно добиться двумя последовательными поворотами, показанными на фиг. 4.7, б и в . Возьмем сначала прибор U , повернутый по отношению к S на 180° вокруг оси у. Оси х', у' и z ' прибора U будут такими, как на фиг. 4.7, б, а амплитуды по отношению к U будут даваться формулой (4.22).
Заметьте теперь, что от U к T можно перейти, повернув прибор U вокруг «оси z», т. е. вокруг z', как показано на фиг. 4.7, в. Из рисунка видно, что требуемый угол вдвое больше угла а, но направлен в обратную сторону (по отношению к z"). Используя преобразование (4.19) с j=-2a, получаем

Подставляя (4.22) в (4.24), получаем

Эти амплитуды, конечно, должны совпасть с полученными в (4.23). Значит, b A должно быть связано с a и b формулой
b A=b-a. (4.26) Это означает, что если угол a между осью А и осью у (прибоpa S ) равен b то в преобразовании поворота на 180° вокруг оси А будет стоять b A=0.
Но коль скоро у какой-то из осей, перпендикулярных к оси z , может оказаться b=0, то ничто не мешает принять эту ось за ось у. Это всего лишь вопрос соглашения, и мы примем это в общем случае. Итог: для поворота на 180° вокруг оси у мы имеем
Читать дальше