
Но мы не вправе утверждать, что фазы амплитуд, относящихся к прибору Т, не могут в двух различных ориентациях а и б (фиг. 4.4) различаться.
Пары приборов, показанных на фиг. 4.4, на самом деле отличаются друг от друга, в чем можно убедиться следующим образом. Предположим, что мы перед прибором S поставили другой, создающий чистое (+ x )-состояние. (Ось х направлена на рисунке вниз.) Эти частицы расщеплялись бы в S на пучки (+ z ) и (- z ), но на выходе S (в точке Р 1 ) оба пучка снова соединялись бы и восстанавливали состояние (+ х). Затем то же самое происходило бы в Т. Если бы за Т поставить третий прибор U , ось которого направлена по (+ х). как показано на фиг. 4.5, а, то все частицы пошли бы в пучок (+) прибора U .

Фиг. 4.5. Частица в состоянии ( + х) ведет себя в опытах а и б по-разному.
Теперь представим, что произойдет, если Т и U вместе повернуть на 90°, как показано на фиг. 4.5, б. Прибор Т опять будет пропускать все, что в него поступает, так что частицы, входящие в U , будут в (+ x )-состоянии по отношению к S . Но U теперь анализирует состояние (+ y ) (по отношению к S ), а это совсем не то, что раньше. (Из симметрии следует ожидать, что через него пройдет только половина частиц.)
Что же могло перемениться? Приборы Т и U по отношению друг к другу расположены одинаково. Могла ли измениться физика просто из-за того, что Т и U иначе ориентированы? Нет, гласит наше первоначальное предположение. Значит, различаться в двух случаях, показанных на фиг. 4.5, должны амплитуды по отношению к Т. То же должно быть, следовательно, и на фиг. 4.4. Частица должна как-то уметь узнавать, что в Р 1она завернула за угол. Как же она может об этом поведать? Что ж, остается только одно: величины С' + и С ' + в обоих случаях одинаковы, но могут — а на самом деле должны — обладать разными фазами. Мы приходим к заключению, что С ' + и С + должны быть связаны формулой

а С' - и С —формулой 
где l, и m — вещественные числа, которые как-то должны быть связаны с углом между S и Т.
В данный момент единственное, что мы можем сказать про l и m,— это то, что они не могут быть равны друг другу (кроме показанного на фиг. 4.5, а особого случая, когда Т и S ориентированы одинаково). Мы видели, что изменение всех амплитуд на одну и ту же фазу ни к каким физическим следствиям не приводит. По той же причине всегда можно добавить к l и m любое постоянное число — это тоже ничего не изменит. Значит, нам представляется возможность выбрать l и m равными плюс и минус одному и тому же числу. Всегда можно взять

Тогда

Итак, мы договоримся считать m=-l и придем к общему правилу, что поворот прибора, относительно которого ведется отсчет, вокруг оси z на какой-то угол приводит к преобразованию

Абсолютные значения одинаковы, а фазы различны. Эти-то фазовые множители и отвечают за различные результаты двух опытов, показанных на фиг. 4.5.
Теперь надо узнать закон, связывающий X с углом между S и Т. Для одного случая ответ известен. Если угол — нуль, то и l — нуль. Теперь предположим, что фазовый сдвиг l, есть непрерывная функция угла j между S и Т (см. фиг. 4.4) при j, стремящемся к нулю. По-видимому, это единственное разумное допущение. Иными словами, если свернуть Т с прямой линии S на малый угол e, то и l тоже будет малым числом, скажем m e, где m — некоторый коэффициент. Мы пишем те, потому что можем доказать, что l обязано быть пропорционально e. Если бы мы поставили за T новый прибор Т, тоже образующий с Т угол e, а с S тем самым образующий угол 2e, то по отношению к Т мы бы имели
Читать дальше