Снова поле обратно пропорционально расстоянию от заряда, но теперь оно зарезается множителем (1- v 2 ), что согласуется с картиной силовых линий. Если v / c мало, то v 2 / c 2 еще меньше, и действие (1-v 2) почти незаметно, поэтому мы снова возвращаемся к закону Кулона. Но если частица движется со скоростью, близкой к скорости света, то поле перед частицей сильно уменьшается, а поле сбоку чудовищно возрастает.
Наш результат, относящийся к электрическому полю заряда, можно представить и так. Предположим, что вы на клочке бумаги нарисовали силовые линии покоящегося заряда, а затем эту картину запустили со скоростью v 2. Тогда благодаря лоренцеву сокращению рисунок сожмется, т. е. частички графита на бумаге будут казаться нам расположенными в других местах. Но чудо состоит в том, что в результате на пролетающем мимо листочке вы увидите точную картину силовых линий точечного движущегося заряда. Лоренцево сокращение сблизит их по бокам, раздвинет перед зарядом и позади него как раз настолько, чтобы получить нужную плотность. Мы уже отмечали, что силовые линии — это не реальность, а лишь способ представить себе электрическое поле. Однако здесь они ведут себя как самые настоящие реальные линии. В этом частном случае, если вы и сделали ошибку, рассматривая силовые линии как нечто реальное и преобразуя их как реальные линии в пространстве, поле в результате все равно получилось бы правильным.

Фиг . 26.4. Электрическое поле заряда.
а — неподвижного, б — летящего с постоянной скоростью v =0,9 с.
Однако от этого силовые линии не станут более реальными. Вспомните об электрическом поле, создаваемом зарядом вместе с магнитом; когда магнит движется, он создает новое электрическое поле и разрушает всю нашу прекрасную картину. Так что простая идея сокращающейся картинки, вообще говоря, не годится. Но все же это очень удобный способ запомнить, как выглядит поле быстро движущегося заряда.

Магнитное поле [из уравнения (26.9)] равно vXE. Когда вы векторно помножите скорость на радиальное поле Е, то получите поле В, силовые линии которого представляют окружности вокруг линии движения (фиг. 26.5). Если же теперь мы подставим обратно все с, то вы убедитесь, что результат получился тот же, что и для медленно движущихся зарядов. Хороший способ установить, куда должны войти с, — это вспомнить формулу для силы:

Вы видите, что произведение скорости на магнитное поле имеет ту же размерность, что и электрическое поле, так что в правой части (26.9) должен стоять множитель 1/с 2, т. е.
(26.12)

Для медленно движущегося заряда ( v << с) поле можно считать кулоновым, и тогда
(26.13)
Эта формула в точности соответствует магнитному полю тока, которое было найдено в гл. 14 (вып. 5).
Попутно мне хотелось бы отметить кое-что весьма интересное просто для того, чтобы вы об этом подумали. (К обсуждению этого мы еще вернемся, но несколько позже.) Представьте себе два электрона, скорости которых перпендикулярны, так что пути их пересекаются, однако электроны не сталкиваются; один из них успевает проскочить перед другим. В какой-то момент их относительное положение будет таким, как изображено на фиг. 26.6, а.


Фиг. 26.5. Магнитное поле вблизи движущегося заряда равно vXE (ср. с фиг. 26.4).
Фиг. 26.6. Силы между двумя движущимися зарядами не всегда равны и противоположны. «Действие», оказывается, не равно «противодействию».
Рассмотрим теперь силы, с которыми q 2 действует на q 1, и наоборот. На q 2со стороны q 1действует только электрическая сила, ибо q 1 на линии своего движения не создает магнитного поля. Однако на q 1 кроме электрического поля, действует еще и магнитное, так что он движется и в магнитном поле, создаваемом зарядом q 2. Все эти силы показаны на фиг. 26.6, б. Электрические силы, действующие на q 1 и q 2, равны по величине и противоположны по направлению. Однако на q 1 еще действует и боковая (магнитная) сила, которой и в помине нет у q 2. Равно ли здесь действие противодействию? Поломайте голову над этим вопросом.
Читать дальше