Feynmann - Feynmann 6a

Здесь есть возможность читать онлайн «Feynmann - Feynmann 6a» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 6a: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 6a»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 6a — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 6a», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

* В английском оригинале « unworldliness ». Прим. ред.

Глава 26

ЛОРЕНЦЕВЫ ПРЕОБРАЗОВАНИЯ ПОЛЕЙ

§ 1. Четырехмерный потенциал дви­жущегося заряда

§ 2. Поля точечного заряда, движу­щегося с посто­янной скоростью

§ 3. Релятивистское преобразование полей

§ 4. Уравнение движения в релятивистских обозначениях

В этой главе c=1

Повторить: гл. 20 «Решение урав­нений Максвелла в пустом пространстве»

§ 1. Четырехмерный потенциал движущегося заряда

В предыдущей главе мы видели, что потен­циал A m=(j, А) является четырехвектором. Его временной компонентой служит скалярный по­тенциал j, а тремя пространственными компо­нентами— векторный потенциал А. Используя преобразования Лоренца, мы нашли также потенциал частицы, движущейся прямолинейно с постоянной скоростью. (В гл. 21 то же самое было сделано несколько иным методом.) Для точечного заряда, координаты которого в мо­мент t равны ( vt , 0, 0), потенциалы в точке (х, у, z ) имеют вид

261 Уравнения 261 дают потенциалы в точке х у z в момент t - фото 249

(26.1)

Уравнения (26.1) дают потенциалы в точке х, у, z в момент t , возникающие от движуще­гося заряда, «истинное» положение которого (имеется в виду положение в момент времени t ) x = vt . Заметьте, что в уравнение входят координаты (x- vt ), у и z , которые являются коор­динатами относительно переменного положения Р движущегося заряда (фиг. 26.1). Но, как вы знаете, истинное влияние распространяется на самом деле со скоростью с, так что поле в точке определяется на самом деле запаздывающим положением заряда Р', координата х которого равна vt ' (где t '= t - r '/с — «запаздывающее» время».)

Фиг 261 Определение полей в точке P от заряда q движущегося вдоль оси x с - фото 250

Фиг. 26.1. Определение полей в точке P от заряда q , движущегося вдоль оси x с постоянной скоростью v . (Поле в точке ( x , y , z ) в «настоящий момент» можно выразить как через «истинное» положение P так и через «запаздывающее» положение P ’ ( т. е. положение в момент t ’= t - r ’/ c ).

Нам, однако, известно, что заряд двигался с постоянной скоростью по прямой линии, поэтому естественно, что поведение в точке Р' непосредственно связано с переменным положением заряда. Фактически, если мы добавим предположение, что потен­циалы зависят только от положения и скорости в запаздывающий момент, тогда уравнение (26.1) будет представлять собой полную формулу для потенциалов заряда, движущегося любым обра­зом. Вот как все это работает. Пусть у вас имеется заряд, дви­жущийся каким-то произвольным образом, скажем, по траекто­рии, изображенной на фиг. 26.2, и вы пытаетесь найти потен­циал в точке (х, у, z ). Прежде всего вы находите запаздывающее положение Р' и скорость v ' в этой точке. Вообразите затем, что заряд сохраняет свое движение с этой скоростью на весь период запаздывания ( t '- t ), так что он появился бы затем в воображае­мом положении Р пр, которое мы будем называть «проекци­онным», причем двигаясь с той же скоростью v '. (На самом деле он, конечно, не делает этого; в момент t он находится в точке Р.) Тогда потенциалы в точке (х, у, z ) будут как раз такими, кото­рые дали бы уравнения (26.1) для воображаемого заряда в про­екционном положении Р пр. Мы хотим здесь сказать, что, по­скольку потенциалы зависят только от того, что делает заряд в запаздывающий момент, они будут одинаковы, независимо от того, продолжает ли заряд свое движение с постоянной скоро­стью или изменяет его после момента t' , т. е. после того, как по­тенциалы, которые возникнут в момент t в точке (х, у, z ), уже определены.

Вы понимаете, конечно, что в тот момент, когда получены формулы для потенциалов произвольно движущегося заряда, мы имеем полную электродинамику; из принципа суперпози­ции мы можем получить потенциалы для любого распределения зарядов.

Фиг 262 Движение заряда по произвольной траектории Потенциалы в точке - фото 251

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 6a»

Представляем Вашему вниманию похожие книги на «Feynmann 6a» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 6a»

Обсуждение, отзывы о книге «Feynmann 6a» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x