Feynmann - Feynmann 4a

Здесь есть возможность читать онлайн «Feynmann - Feynmann 4a» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 4a: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 4a»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 4a — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 4a», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Так оно и есть на самом деле, однако докажите это самостоя­тельно. Указание: r u пропорционально скорости изменения c с расстоянием х. Следовательно, продифференцировав волновое уравнение по х, мы немедленно обнаружим, что д c /дх удовлет­воряет тому же самому уравнению. Другими словами, r uудов­летворяет тому же самому уравнению. Но Р u пропорционально r u, поэтому и Р u удовлетворяет тому же самому уравнению. Та­ким образом, и давление, и перемещение — все описывается одним и тем же уравнением.

Обычно волновое уравнение для звука записывается через давление, а не через перемещение. Это проще, потому что давление — скаляр и не имеет никакого направления. Но перемещение есть вектор, и поэтому лучше иметь дело с дав­лением.

Следующий вопрос который нам предстоит обсудить относится к волновому - фото 39

Следующий вопрос, который нам предстоит обсудить, отно­сится к волновому уравнению в трехмерном пространстве. Мы знаем, что звуковая волна в одномерном пространстве описы­вается решением ехр[i(wt- kx )], где w=kc S. Кроме того, нам из­вестно, что в трех измерениях волна описывается выражением exp[i(wt- k x x - k y y - k z z )], и в этом случае w 2=k 2с S 2[сокращен­ная запись (k 2 x+k 2 y+k 2 z)c 2 S]. Сейчас мы хотим просто угадать вид волнового уравнения в трехмерном пространстве. Естествен­но, что в случае звука это уравнение можно получить с помощью тех же самых динамических соображений, но уже в трехмерном пространстве. Однако мы не будем сейчас делать этого, а просто напишем ответ: уравнение для давления или перемещения (или чего-то другого) имеет вид

правильность этого уравнения может быть легко проверена подстановкой в него функции exp[i(wt- k· r )]. Ясно, что при каждом дифференцировании по х происходит умножение на - ik x . Если мы дифференцируем дважды, то это эквивалентно умножению на - k 2 x , так что для такой волны первый член получится равным - k 2 x P u . Точно таким же образом второй член окажется равным -k 2 у Р u , а третий — равным - k 2 z P u . С правой же стороны мы получим -w 2/c 2 SР u. Если мы вынесем 1 за скобку Р и и изменим знаки всех членов, то увидим, что между k и w как раз получится желаемое соотношение.

Возвращаясь назад, мы должны прийти к основному урав­нению, соответствующему дисперсионному соотношению (48.22) для квантовомеханической волны. Если j — амплитуда нахождения частицы в момент t в точке с координатами х, у и z, то основное уравнение квантовой механики для свободной частицы имеет вид

Прежде всего заметим что релятивистский характер этого уравнения гарантируется - фото 40

Прежде всего заметим, что релятивистский характер этого уравнения гарантируется появлением координат x, y, z и вре­мени t в такой удачной комбинации, что она автоматически учитывает принцип относительности. Кроме того, это уравне­ние волновое. Если подставить в него плоскую волну, то как следствие мы получим равенство -k 2+w 2/c 2=m 2c 2/h 2, которое должно выполняться в квантовой механике. В этом волновом уравнении содержится еще одна фундаментальная вещь: любая суперпозиция волн также будет его решением. Таким образом, это уравнение опирается на всю квантовую механику и всю теорию относительности, которая уже обсуждалась нами до сих пор, по крайней мере когда мы имели дело с единственной частицей в пустом пространстве без всяких потенциалов и воздействующих на нее сил!

§ 7. Собственные колебания

Вернемся теперь к другим очень любопытным примерам биений, которые немного отличаются от того, что мы рассмат­ривали до сих пор. Представьте себе два одинаковых маятника, которые связаны между собой слабой пружинкой. Длины их должны быть одинаковыми с возможно большей точностью. Если мы оттянем один маятник и отпустим его, то он будет качаться взад и вперед и будет тянуть то взад, то вперед связывающую пружинку, т. е. получится устройство, создающее силу с собственной частотой второго маятника. Можно заключить из знако­мой нам теории резонансов, что если к какому-то предмету при­кладывать с надлежащей частотой силу, то она будет двигать этот предмет. Таким образом, ясно, что один маятник, двигаясь взад и вперед, будет раскачивать второй. Однако при этих усло­виях происходит некое новое явление, связанное с тем, что энергия системы конечна. Первый маятник постепенно рас­трачивает свою энергию, вызывая движение другого маятника, и в конце концов полностью отдаст свою энергию и остано­вится. Вся энергия теперь будет сосредоточена во втором маятнике. Но пройдет немного времени и все будет происхо­дить наоборот: энергия из второго маятника будет перекачи­ваться назад, в первый маятник. Это очень интересное и за­нимательное явление. Мы сказали, что оно связано с теорией биений, и сейчас мы должны показать, как можно понять это явление с точки зрения этой теории.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 4a»

Представляем Вашему вниманию похожие книги на «Feynmann 4a» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 4a»

Обсуждение, отзывы о книге «Feynmann 4a» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x