Групповая скорость равна производной со по k , а фазовая скорость равна отношению w /k.
Посмотрим, можно ли понять, почему так происходит. Рассмотрим две волны с несколько различными длинами, как это показано на фиг. 48.1. Они то совпадают по фазе, то различаются, то снова совпадают и т. д. Однако теперь эти волны в действительности представляют волны в пространстве, распространяющиеся с немного различными скоростями. Но поскольку фазовая скорость, скорость узлов этих двух волн, не в точности одинакова, то происходит нечто новое. Предположим, что мы едем рядом с одной из волн и смотрим на другую. Если бы они двигались с одинаковой скоростью, то вторая волна оставалась бы относительно нас там же, где и была с самого начала, поскольку мы едем как бы на гребне одной волны и видим гребень второй прямо около себя. Однако в действительности скорости не равны. Частоты немного отличаются друг от друга, а поэтому немного отличаются и скорости. Из-за этой небольшой разницы в скоростях другая волна либо медленно обгоняет нас, либо отстает. Что же с течением времени происходит с узлом? Если чуть-чуть продвинуть одну из волн, то узел при этом уйдет на значительное расстояние вперед (или назад), т. е. сумма этих двух волн имеет какую-то огибающую, которая вместе с распространением волн скользит по ним с другой скоростью. Групповая скорость является той скоростью, с которой передаются модулирующие сигналы.
Если мы посылаем сигнал, т. е. производим какие-то изменения волны, которые могут быть услышаны и расшифрованы кем-то, то это является своего рода модуляцией, но такая модуляция при условии, что она относительно медленная, будет распространяться с групповой скоростью (быстрые модуляции значительно труднее анализировать).
Теперь мы можем показать (наконец-то!), что скорость распространения рентгеновских лучей в куске угля, например, не больше, чем скорость света, хотя фазовая скорость больше скорости света. Чтобы сделать это, нужно найти соотношение d w / dk , которое мы вычислим дифференцированием формулы

(48.14): dk / d w =1/ c + a /( w 2 c ). А групповая скорость равна обратной величине, т. е.
что меньше, чем с! Таким образом, хотя фазы могут бежать быстрее скорости света, модулирующие сигналы движутся медленнее, и в этом состоит разрешение кажущегося парадокса!
Разумеется, в простейшем случае w=kc групповая скорость d w / dk тоже равна с, т. е. когда все фазы движутся с одинаковой скоростью, естественно, и групповая скорость будет той же самой.
§ 5. Амплитуда вероятности частиц

Рассмотрим еще один необычайно интересный пример фазовой скорости. Он относится к области квантовой механики. Известно, что амплитуда вероятности найти частицу в данном месте изменяется при некоторых обстоятельствах в пространстве и времени (давайте возьмем одно измерение) следующим образом:

где w — частота, связанная с классической энергией, E = h w , a k — волновое число, которое связано с импульсом соотношением р=hk. Мы говорим, что частица имеет определенный импульс р, если волновое число в точности равно k , т. е. если бежит идеальная волна повсюду с одинаковой амплитудой. Выражение (48.19) дает амплитуду вероятности, но если мы возьмем квадрат абсолютной величины, то получим относительную вероятность обнаружения частицы как функцию положения и времени. В данном случае она равна постоянной, что означает вероятность обнаружить частицу в любом месте, Рассмотрим теперь такой случай, когда известно, что обнаружить частицу в каком-то месте более вероятно, чем в других местах. Подобную картину мы описываем волной, которая имеет максимум в данном месте и сходит на нет по мере удаления в стороны (фиг. 48.6).
Фиг. 48 . 6. Локализованный волновой пакет,
(Это не то же самое, что изображено на фиг. 48.1, где волна имеет целый ряд максимумов, но сними вполне можно расправиться, сложив несколько волн с приблизительно одинаковыми значениями wи k . Таким способом можно избавиться от всех максимумов, кроме одного.)
Читать дальше